Клеточный центр: функции и строение, распределение генетической информации. Цитоплазма. Органоиды

Помимо органелл или органоидов клетка содержит непостоянные клеточные включения. Обычно содержатся в цитоплазме, но могут встречаться в митохондриях, в ядре и других органоидах.

Виды и формы

Включения - необязательные компоненты растительной или животной клетки, накапливающиеся в процессе жизнедеятельности и метаболизма. Включения не стоит путать с органеллами. В отличие от органелл включения то возникают, то исчезают в структуре клетки. Некоторые из них небольшие, едва заметные, другие превышают в размерах органеллы. Они могут иметь разную форму и различный химический состав.

По форме выделяют:

  • гранулы;
  • кристаллы;
  • зёрна;
  • капли;
  • глыбы.

Рис. 1. Формы включений.

По функциональному назначению включения подразделяются на следующие группы:

  • трофические или накопительные - запасы питательных веществ (вкрапления липидов, полисахаридов, реже - белков);
  • секреты - химические соединения в жидком виде, накапливающиеся в железистых клетках;
  • пигменты - окрашенные вещества, выполняющие определённые функции (например, гемоглобин переносит кислород, меланин - окрашивает кожу);
  • экскреты - продукты метаболического распада.

Рис. 2. Пигменты в клетке.

Все включения являются продуктами внутриклеточного обмена веществ. Часть так и остаётся в клетке «про запас», часть расходуется, часть со временем выводится из клетки.

Строение и функции

Главными включениями клетки являются жиры, белки, углеводы. Их краткое описание дано в таблице “Строение и функции клеточного включения”.

ТОП-4 статьи которые читают вместе с этой

Включения

Строение

Функции

Примеры

Мелкие капли. Находятся в цитоплазме. У млекопитающих жировые капли расположены в специальных жировых клетках. В растениях большая часть жировых капель находится в семенах

Являются основным запасом энергии, расщепление 1 г жиров высвобождает 39,1 кДж энергии

Клетки соединительной ткани

Полисахариды

Гранулы разнообразных форм и размеров. Обычно в животной клетке запасаются в форме гликогена. В растениях скапливаются зёрна крахмала

При необходимости восполняют недостаток глюкозы, являются энергетическим запасом

Клетки поперечнополосатых мышечных волокон, печени

Гранулы в форме пластинок, шариков, палочек. Встречаются реже, чем липиды и сахара, т.к. большая часть белков расходуется в процессе метаболизма

Являются строительным материалом

Яйцеклетка, клетки печени, простейшие

В растительной клетке роль включений играют вакуоли - мембранные органеллы, накапливающие питательные вещества. Вакуоли содержат водный раствор с органическими (соли) и неорганическими (углеводы, белки, кислоты и т.д.) веществами. Белки в небольшом количестве могут находиться в ядре. Липиды в виде капель накапливаются в цитоплазме.

Цитоплазма (cytoplasma) представляет собой сложную коллоидную систему, состоящую из гиалоплазмы, мембранных и немембранных органелл и включений.

Гиалоплазма (от греч. hyaline - прозрачный) представляет собой сложную коллоидую систему состоящую из различных биополимеров (белки, нуклеиновые кислоты, полисахариды), которая способна переходить из золеобразного (жидкого) состояния в гель и обратно.

¨Гиалоплазма состоит из воды, органических и неорганических соединений, растворенных в ней и цитоматрикса, представленного трабекулярной сеткой волокон белковой природы, толщиной 2-3 нм.

¨Функция гиалоплазмы заключается в том, что эта среда объединяет все клеточные структуры и обеспечивает химическое взаимодействие их друг с другом.

Через гиалоплазму осуществляется большая часть внутриклеточных транспортных процессов: перенос аминокислот, жирных кислот, нуклеотидов, сахаров. В гиалоплазме идет постоянный поток ионов к плазматической мембране и от нее, к митохондриям, ядру и вакуолям. Гиалоплазма составляет около 50% от всего объема цитоплазмы.

Органеллы и включения. Органеллы - постоянные и обязательные для всех клеток микроструктуры, обеспечивающие выполнение жизненно важных функций клеток.

В зависимости от размеров органеллы разделяются на:

1) микроскопические - видимые под световым микроскопом;

    субмикроскопические - различимые при помощи электронного микроскопа.

По наличии мембраны в составе органелл различают:

1) мембранные;

    немембранные.

В зависимости от назначения все органеллы делятся на:

Мембранные органеллы

Митохондрии

Митохондрии - микроскопические мембранные органеллы общего назначения.

¨Размеры - толщина 0,5мкм, длина от 1 до 10мкм.

¨Форма - овальная, вытянутая, неправильная.

¨Строение - митохондрия ограничена двумя мембранами толщиной около 7нм:

1) Наружной гладкой митохондриальной мембраной (membrana mitochondrialis externa), которая отграничивает митохондрию от гиалоплазмы. Она имеет равные контуры, замкнута таким образом, что представляет мешок.

    Внутренней митохондриальной мембраной (memrana mitochondrialis interna), которая образует выросты, складки (кристы) внутрь митохондрии и ограничивает внутреннее содержание митохондрии - матрикс. Внутренняя часть митохондрии заполнена электронно-плотным веществом, которое носит название матрикс.

Матрикс имеет тонкозернистое строение и содержит тонкие нити толщиной 2-3 нм и гранулы размером около 15-20 нм. Нити представляют собой молекулы ДНК, а мелкие гранулы - митохондриальные рибосомы.

¨Функции митохондрий

1. Синтез и накопление энергии в виде АТФ, происходит в результате процессов окисления органических субстратов и фосфорилирования АТФ. Эти реакции протекают при участии ферментов цикла трикарбоновых кислот, локализованных в матриксе. Мембраны крист имеют системы дальнейшего транспорта электронов и сопряженного с ним окислительного фосфорилирования (фосфорилирование АДФ в АТФ).

2. Синтез белка. Митохондрии в своем матриксе имеют автономную систему синтеза белка. Это единственные органеллы, которые имеют молекулы собственной ДНК, свободной от гистоновых белков. В матриксе митохондрий также происходит образование рибосом, которые синтезируют ряд белков, некодируемых ядром и используемых для по строения собственных ферментных систем.

3. Регуляция водного обмена.

Лизосомы

Лизосомы (lisosomae) - субмикроскопические мембранные органеллы общего назначения.

¨Размеры - 0,2-0,4 мкм

¨Форма - овальная, мелкая, шаровидная.

¨Строение - лизосомы имеют в своем составе протеолитические ферменты (известно более 60), которые способны расщеплять различные биополимеры. Ферменты располагаются замкнутом мембранном мешочке, который предупреждает их попадание в гиалоплазму.

Среди лизосом различают четыре типа:

    Первичные лизосомы;

    Вторичные (гетерофагосомы, фаголизосомы);

    Аутофагосомы

    Остаточные тельца.

Первичные лизосомы - это мелкие мембранные пузырьки размером 0,2-0,5 мкм, заполненные неструктурированным веществом, содержащим гидролитические ферменты в неактивном состоянии (маркерный - кислая фосфотаза).

Вторичные лизосомы (гетерофагосомы) или внутриклеточные пищеварительные вакуоли, которые формируются при слиянии первичных лизосом с фагоцитарными вакуолями. Ферменты первичной лизосомы начинают контактировать с биополимерами, и расщепляют их до мономеров. Последние транспортируются через мембрану в гиалоплазму, где происходит их реутилизация, то есть включение в различные обменные процессы.

Аутофагосомы (аутолизосомы) – постоянно встречаются в клетках простейших, растений и животных. По совей морфологии их относят к вторичным лизосомам, но с тем различием, что в составе этих вакуолей встречаются фрагменты или даже целые цитоплазматические структуры, такие, как митохондрии, пластиды, рибосомы, гранулы гликогена.

Остаточные тельца (телолизосома, corpusculum residuale) - представляют собой окруженные биологической мембраной нерасщепленные остатки, содержат небольшое количество гидролитических ферментов, в них происходит уплотнение содержимого, его перестройка. Часто в остаточных тельцах происходит вторичная структуризация не переваренных липидов и последние образуют слоистые структуры. Там же наблюдается отложение пигментных веществ - пигмент старения, содержащий липофусцин.

¨Функция - переваривание биогенных макромолекул, модификация продуктов синтезируемых клеткой с помощью гидролаз.

Цитоплазму называют внутренней средой организма, потому что она постоянно перемещается и приводит в движение все клеточные компоненты. В цитоплазме постоянно идут обменные процессы, содержатся все органические и не органические вещества.

Строение

Цитоплазма состоит из постоянной жидкой части – гиалоплазмы и элементов, которые меняются – органелл и включений.

Органеллы цитоплазмы делятся на мембранные и немембранные, последние в свою очередь могут быть двухмембранные и одномембранные.

  1. Немембранные органеллы : рибосомы, вакуоли, центросома, жгутики.
  2. Двухмембранные органеллы : митохондрии, пластиды, ядро.
  3. Одномембранные органеллы : аппарат Гольджи, лизосомы, вакуоли эндоплазматический ретикулум.

Также к компонентам цитоплазмы относятся клеточные включения, представлены в виде липидных капель или гранул гликогена.

Основные признаки цитоплазмы:

  • Бесцветная;
  • эластичная;
  • слизисто-вязкая;
  • структурированная;
  • подвижная.

Жидкая часть цитоплазмы по своему химическому составу отличается в клетках разной специализации. Основное вещество – вода от 70% до 90%, также в состав входят протеины, углеводы, фосфолипиды, микроэлементы, соли.

Кислотно-щелочное равновесие поддерживается на уровне 7,1–8,5pH (слабощелочное).

Цитоплазма, при изучении на большом увеличении микроскопа, не является однородной средой. Различают две части – одна находится на периферии в области плазмолеммы (эктоплазма), другая – возле ядра (эндоплазма).

Эктоплазма служит связующим звеном с окружающей средой, межклеточной жидкостью и соседними клетками. Эндоплазма – это место расположения всех органелл.

В структуре цитоплазмы выделяют особые элементы – микротрубочки и микрофиламенты.

Микротрубочки – немембранные органоиды, необходимые для перемещения органелл внутри клетки и образования цитоскелета. Глобулярный белок тубулин – основное строительное вещество для микротрубочек. Одна молекула тубулина в диаметре не превышает 5нм. При этом молекулы способны объединятся друг с другом, вместе образуя цепочку. 13 таких цепочек формируют микротрубочку диаметром 25нм.

Молекулы тубулина находятся в постоянном движении для формирования микротрубочек, если на клетку воздействуют неблагоприятные факторы, процесс нарушается. Микротрубочки укорачиваются или вовсе денатурируются. Эти элементы цитоплазмы очень важны в жизни растительных и бактериальных клеток, так как принимают участие в строении их оболочек.


Микрофиламенты – это субмикроскопические немембранные органеллы, которые образуют цитоскелет. Также входят в состав сократительного аппарата клетки. Микрофиламенты состоят из двух видов белка – актина и миозина. Актиновые волокна тонкие до 5нм в диаметре, а миозиновые толстые – до 25нм. Микрофиламенты в основном сосредоточены в эктоплазме. Существуют также специфические филаменты, которые характерны для конкретного вида клеток.

Микротрубочки и микрофиламенты вместе образуют цитоскелет клетки, который обеспечивает взаимосвязь всех органелл и внутриклеточный метаболизм.

В цитоплазме также выделяют высокомолекулярные биополимеры. Они объединяются в мембранные комплексы, которые пронизывают все внутреннее пространство клетки, предопределяют месторасположение органелл, отграничивают цитоплазму от клеточной стенки.

Особенности строения цитоплазмы заключаются в способности изменять свою внутреннюю среду. Она может пребывать в двух состояниях: полужидком (золь ) и вязком (гель ). Так, в зависимости от влияния внешних факторов (температура, радиация, химические растворы), цитоплазма переходит из одного состояния в другое.

Функции

  • Наполняет внутриклеточное пространство;
  • связывает между собой все структурные элементы клетки;
  • транспортирует синтезированные вещества между органоидами и за пределы клетки;
  • устанавливает месторасположение органелл;
  • является средой для физико-химических реакций;
  • отвечает за клеточный тургор, постоянство внутренней среды клетки.

Функции цитоплазмы в клетке зависят также от вида самой клетки: растительная она, животная, эукариотическая или прокариотическая. Но во всех живых клетках в цитоплазме происходит важное физиологическое явление – гликолиз. Процесс окисления глюкозы, который осуществляется в аэробных условиях и заканчивается высвобождением энергии.

Движение цитоплазмы

Цитоплазма находится в постоянном движении, эта характеристика имеет огромное значение в жизни клетки. Благодаря движению возможны метаболические процессы внутри клетки и распределение синтезированных элементов между органеллами.

Биологи наблюдали движение цитоплазмы в больших клетках, при этом следя за перемещением вакуоль. За движение цитоплазмы отвечают микрофиламенты и микротрубочки, которые приводятся в действие при наличии молекул АТФ.

Движение цитоплазмы показывает, насколько активны клетки и способны к выживанию. Этот процесс зависим от внешних воздействий, поэтому малейшие изменения окружающих факторов приостанавливают или ускоряют его.

Роль цитоплазмы в биосинтезе белка . Биосинтез белка осуществляется при участии рибосом, они же непосредственно находятся в цитоплазме или на гранулярной ЭПС. Также через ядерные поры в цитоплазму поступает иРНК, которая несет информацию, скопированную с ДНК. В экзоплазме содержатся необходимые аминокислоты для синтеза белка и ферменты, катализирующие эти реакции.

Сводная таблица строения и функций цитоплазмы

Структурные элементы Строение Функции
Эктоплазма Плотный слой цитоплазмы Обеспечивает связь с внешней средой
Эндоплазма Более жидкий слой цитоплазмы Место расположения органоидов клетки
Микротрубочки Построены из глобулярного белка - тубулина с диаметром 5нм, который способен полимеризироваться Отвечают за внутриклеточный транспорт
Микрофиламенты Состоят из актиновых и миозиновых волокон Образуют цитоскелет, поддерживают связь между всеми органеллами

К эукариотам относятся царства растений, животных, грибов.

Основные признаки эукариот.

  1. Клетка разделена на цитоплазму и ядро.
  2. Большая часть ДНК сосредоточена в ядре. Именно ядерная ДНК отвечает за большую часть процессов жизнедеятельности клетки и за передачу наследственности дочерним клеткам.
  3. Ядерная ДНК расчленена на нити, не замкнутые в кольца.
  4. Нити ДНК линейно вытянуты внутри хромосом, отчетливо видны в процессе митоза. Набор хромосом в ядрах соматических клеток диплоидный.
  5. Развита система наружных и внутренних мембран. Внутренние делят клетку на отдельные отсеки – компартменты. Принимают участие в образовании органоидов клетки.
  6. Органоидов много. Некоторые органоиды окружены двойной мембраной: ядро, митохондрии, хлоропласты. В ядре, наряду с оболочкой и ядерным соком, обнаруживается ядрышко и хромосомы. Цитоплазма представлена основным веществом (матриксом, гиалоплазмой) в которой распределены включения и органеллы.
  7. Большое число органелл ограничено одинарной мембранной (лизосомы, вакуоли и т.д.)
  8. В эукариотической клетке выделяют органеллы общего и специального значения. Например: общего значения – ядро, митохондрии, ЭПС и т.д.; специального значения - микроворсинки всасывающей поверхности эпителиальной клетки кишечника, реснички эпителия трахеи и бронхов.
  9. Характерен митоз – механизм воспроизведения в поколениях генетически сходных клеток.
  10. Свойствен половой процесс. Образуются истинные половые клетки – гаметы.
  11. Не способны к фиксации свободного азота.
  12. Аэробное дыхание происходит в митохондриях.
  13. Фотосинтез проходит в хлоропластах содержащих мембраны, которые обычно уложенные в граны.
  14. Эукариоты представлены одноклеточными, нитчатыми и истинно многоклеточными формами.

Основные структурные компоненты эукариотической клетки

органоиды

Ядро. Строение и функции.

В клетке выделяют ядро и цитоплазму. Клеточное ядро состоит из оболочки, ядерного сока, ядрышка и хроматина. Функциональная рольядерной оболочки заключается в обособлении генетического материала (хромосом) эукариотической клетки от цитоплазмы с присущими ей многочисленными метаболическими реакциями, а также регуляции двусторонних взаимодействий ядра и цитоплазмы. Ядерная оболочка состоит из двух мембран, разделенных околоядерным (перинуклеарным) пространством. Последнее может сообщаться с канальцами цитоплазматической сети.

Ядерная оболочка пронизана порожу диаметром 80-90нм. Область поры или поровый комплекс с диаметром около 120нм имеет определенное строение, что указывает на сложный механизм регуляции ядерно-цитоплазматических перемещений веществ и структур. Количество пор зависит от функционального состояния клетки. Чем выше синтетическая активность в клетке, тем больше их число. Подсчитано, что у низших позвоночных животных в эритробластах, где интенсивно образуется и накапливается гемоглобин, на 1мкм 2 ядерной оболочки приходится около 30пор. В зрелых эритроцитах названных животных, сохраняющих ядра, на 1мк»г оболочки остается до пяти пор, т.е. в 6 раз меньше.

В области перового комплекса начинается так называемая плотная пластинка - белковый слой, подстилающий на всем протяжении внутреннюю мембрану ядерной оболочки. Эта структура выполняет прежде всего опорную функцию, так как при ее наличии форма ядра сохраняется даже в случае разрушения обеих мембран ядерной оболочки. Предполагают также, что закономерная связь с веществом плотной пластинки способствует упорядоченному расположению хромосом в интерфазном ядре.

Основу ядерного сока, илиматрикса, составляют белки. Ядерный сок образует внутреннюю среду ядра, в связи с чем он играет важную роль в обеспечении нормального функционирования генетического материала. В составе ядерного сока присутствуютнитчатые, илифибриллярные, белки, с которыми связано выполнение опорной функции: в матриксе находятся также первичные продукты транскрипции генетической информации - гетероядерные РНК (гя-РНК), которые здесь же подвергаются процессингу, превращаясь в м-РНК (см. 3.4.3.2).

Ядрышко представляет собой структуру, в которой происходит образование и созреваниерибосомальных РНК (рРНК). Гены рРНК занимают определенные участки (в зависимости от вида животного) одной или нескольких хромосом (у человека 13-15и 21-22пары) - ядрышковые организаторы, в области которых и образуются ядрышки. Такие участки в метафазных хромосомах выглядят как сужения и называютсявторичными перетяжками. С помощью электронного микроскопа в ядрышке выявляют нитчатый и зернистый компоненты. Нитчатый (фибриллярный) компонент представлен комплексами белка и гигантских молекул РНК-предшественниц, из которых затем образуются более мелкие молекулы зрелых рРНК. В процессе созревания фибриллы преобразуются в рибонуклеопротеиновые зерна (гранулы), которыми представлен зернистый компонент.

Хроматиновые структуры в виде глыбок, рассеянных в нуклеоплазме, являются интерфазной формой существования хромосом клетки

цитоплазма

В цитоплазме различают основное вещество (матрикс, гиалоплазма), включения и органеллы.Основное вещество цитоплазмы заполняет пространство между плазмалеммой, ядерной оболочкой и другими внутриклеточными структурами. Обычный электронный микроскоп не выявляет в нем какой-либо внутренней организации. Белковый состав гиалоплазмы разнообразен. Важнейшие из белков представлены ферментами гаиколиза, обмена Сахаров, азотистых оснований, аминокислот и липидов. Ряд белков гиалоплазмы служит субъединицами, из которых происходит сборка таких структур, как микротрубочки.

Основное вещество цитоплазмы образует истинную внутреннюю среду клетки, которая объединяет все внутриклеточные структуры и обеспечивает взаимодействие их друг с другом. Выполнение матриксом объединяющей, а также каркасной функции может быть связано с выявляемой с помощью сверхмощного электронного микроскопа микротрабекулярной сети, образованной тонкими фибриллами толщиной 2-3нм и пронизывающей всю цитоплазму. Через гиалоплазму осуществляется значительный объем внутриклеточных перемещений веществ и структур. Основное вещество цитоплазмы следует рассматривать так же, как сложную коллоидную систему, способную переходить из золеобразного (жидкого) состояния в гелеобразное. В процессе таких переходов совершается работа. О функциональном значении таких переходов см. разд. 2.3.8.

Включениями (рис. 2.5)называют относительно непостоянные компоненты цитоплазмы, которые служат запасными питательными веществами (жир, гликоген), продуктами, подлежащими выведению из клетки (гранулы секрета), балластными веществами (некоторые пигменты).

Органеллы - это постоянные структуры цитоплазмы, выполняющие в клетке жизненно важные функции.

Выделяют органеллы общего значения испециальные. Последние в значительном количестве присутствуют в клетках, специализированных к выполнению определенной функции, но в незначительном количестве могут встречаться и в других типах клеток. К ним относят, например, микроворсинки всасывающей поверхности эпителиальной клетки кишечника, реснички эпителия трахеи и бронхов, синаптические пузырьки, транспортирующие вещества -переносчики нервного возбуждения с одной нервной клетки на другую или клетку рабочего органа, миофибриллы, от которых зависит сокращение мышцы. Детальное рассмотрение специальных органелл входит в задачу курса гистологии.

К органеллам общего значения относят элементы канальцевой и вакуолярной системы в виде шероховатой и гладкой цитоплазматической сети, пластинчатый комплекс, митохондрии, рибосомы и полисомы, лизосомы, пероксисомы, микрофибриллы и микротрубочки, центриоли клеточного центра. В растительных клетках выделяют также хлоропласта, в которых происходит фотосинтез.

Канальцевая ивакуолярная системы образованы сообщающимися или отдельными трубчатыми или уплощенными (цистерна) полостями, ограниченными мембранами и распространяющимися по всей цитоплазме клетки. Нередко цистерны имеют пузыревидные расширения. В названной системе выделяютшероховатую игладкую цитоплазматическую сети (см. рис. 2.3).Особенность строения шероховатой сети состоит в прикреплении к ее мембранам полисом. В силу этого она выполняет функцию синтеза определенной категории белков, преимущественно удаляемых из клетки, например секретируемых клетками желез. В области шероховатой сети происходит образование белков и липидов цитоплазматических мембран, а также их сборка. Плотно упакованные в слоистую структуру цистерны шероховатой сети являются участками наиболее активного белкового синтеза и называютсяэргастоплазмой.

Мембраны гладкой цитоплазматической сети лишены полисом. Функционально эта сеть связана с обменом углеводов, жиров и других веществ небелковой природы, например стероидных гормонов (в половых железах, корковом слое надпочечников). По канальцам и цистернам происходит перемещение веществ, в частности секретируемого железистой клеткой материала, от места синтеза в зону упаковки в гранулы. В участках печеночных клеток, богатых структурами гладкой сети, разрушаются и обезвреживаются вредные токсические вещества, некоторые лекарства (барбитураты). В пузырьках и канальцах гладкой сети поперечно-полосатой мускулатуры сохраняются (депонируются) ионы кальция, играющие важную роль в процессе сокращения.

Рибосома - это округлая рибонуклеопротеиновая частица диаметром 20-30нм. Она состоит из малой и большой субъединиц, объединение которых происходит в присутствии матричной (информационной) РНК (мРНК). Одна молекула мРНК обычно объединяет несколько рибосом наподобие нитки бус. Такую структуру называютполисомой. Полисомы свободно располагаются в основном веществе цитоплазмы или прикреплены к мембранам шероховатой цитоплазматической сети. В обоих случаях они служат местом активного синтеза белка. Сравнение соотношения количества свободных и прикрепленных к мембранам полисом в эмбриональных недифференцированных и опухолевых клетках, с одной стороны, и в специализированных клетках взрослого организма -с другой, привело к заключению, что на полисомах гиалоплазмы образуются белки для собственных нужд (для «домашнего» пользования) данной клетки, тогда как на полисомах гранулярной сети синтезируются белки, выводимые из клетки и используемые на нужды организма (например, пищеварительные ферменты, белки грудного молока).

Пластинчатый комплекс Голъджи образован совокупностью диктиосом числом от нескольких десятков (обычно около 20)до нескольких сотен и даже тысяч на клетку.

Диктиосома (рис. 2.6,А ) представлена стопкой из 3-12уплощенных дискообразных цистерн, от краев которых отшнуровываются пузырьки (везикулы). Ограниченные определенным участком (локальные) расширения цистерн дают более крупные пузырьки (вакуоли). В дифференцированных клетках позвоночных животных и человека диктиосомы обычно собраны в околоядерной зоне цитоплазмы. В пластинчатом комплексе образуются секреторные пузырьки или вакуоли, содержимое которых составляют белки и другие соединения, подлежащие выводу из клетки. При этом предшественник секрета (просекрет), поступающий.в диктиосому из зоны синтеза, подвергается в ней некоторым химическим преобразованиям. Он также обособляется (сегрегируется) в виде «порций», которые здесь же одеваются мембранной оболочкой. В пластинчатом комплексе образуются лизосомы. В диктиосомах синтезируются полисахариды, а также их комплексы с белками (гликопротеины) и жирами (гликолипиды), которые затем можно обнаружить в гликокаликсе клеточной оболочки.

Оболочка митохондрий состоит из двух мембран, различающихся по химическому составу, набору ферментов и функциям. Внутренняя мембрана образует впячивания листовидной (кристы) или трубчатой (тубулы) формы. Пространство, ограниченное внутренней мембраной, составляет матрикс органеллы. В нем с помощью электронного микроскопа обнаруживаются зерна диаметром 20-40нм. Они накапливают ионы кальция и магния, а также полисахариды, например гликоген.

В матриксе размещен собственный аппарат биосинтеза белка органеллы. Он представлен 2-б копиями кольцевой и лишенной гистонов (как у прокариот) молекулы ДНК, рибосомами, набором транспортных РНК (тРНК), ферментами редупликации ДНК, транскрипции и трансляции наследственной информации. По основным свойствам: размерам и структуре рибосом, организации собственного наследственного материала -этот аппарат сходен с таковым у прокариот и отличается от аппарата биосинтеза белка цитоплазмы эукариотической клетки (чем подтверждается симбиотическая гипотеза происхождения митохондрий; см. § 1.5).Гены собственной ДНК кодируют нуклеотидные последовательности митохондриальных рРНК и тРНК, а также последовательности аминонокислот некоторых белков органеллы, главным образом ее внутренней мембраны. Аминокислотные последовательности (первичная структура) большинства белков митохондрий закодированы в ДНК клеточного ядра и образуются вне органеллы в цитоплазме.

Главная функция митохондрий состоит в ферментативном извлечении из определенных химических веществ энергии (путем их окисления) и накоплении энергии в биологически используемой форме (путем синтеза молекул аденозинтрифосфата -АТФ). В целом этот процесс называетсяокислительным (расформированием. В энергетической функции митохондрий активно участвуют компоненты матрикса и внутренняя мембрана. Именно с этой мембраной связаны цепь переноса электронов (окисление) и АТФ-синтетаза, катализирующая сопряженное с окислением фосфорилирование АДФ в АТФ. Среди побочных функций митохондрий можно назвать участие в синтезе стероидных гормонов и некоторых аминокислот (глутаминовая).

Лизосомы (рис. 2.6,В ) представляют собой пузырьки диаметром обычно 0,2-0,4мкм, которые содержат набор ферментов кислых гидролаз, катализирующих при низких значениях рН гидролитическое (в водной среде) расщепление нуклеиновых кислот, белков, жиров, полисахаридов. Их оболочка образована одинарной мембраной, покрытой иногда снаружи волокнистым белковым слоем (на электронограммах «окаймленные» пузырьки). Функция лизосом - внутриклеточное переваривание оазличных химических соединений и структур.

Первичными лизосомами (диаметр 100нм) называют неактивные органеллы,вторичными - органеллы, в которых происходит процесс переваривания. Вторичные лизосомы образуются из первичных. Они подразделяются нагетеролизосомы (фаголизосомы) иаутолизосомы (цитолизосомы). В первых (рис. 2.6,Г ) переваривается материал, поступающий в клетку извне путем пиноцитоза и фагоцитоза, во вторых разрушаются собственные структуры клетки, завершившие свою функцию. Вторичные лизосомы, в которых процесс переваривания завершен, называютостаточными тельцами (телолизосомы). В них отсутствуют гидролазы и содержится непереваренный материал.

Микротельца составляют сборную группу органелл. Это ограниченные одной мембраной пузырьки диаметром 0,1-1,5мкм с мелкозернистым матриксом и нередко кристаллоидными или аморфными белковыми включениями. К этой группе относят, в частности,пероксисомы. Они содержат ферменты оксидазы, катализирующие образование пероксида водорода, который, будучи токсичным, разрушается затем под действием фермента пероксидазы. Эти реакции включены в различные метаболические циклы, например в обмен мочевой кислоты в клетках печени и почек. В печеночной клетке число пероксисом достигает70-100.

К органеллам общего значения относят также некоторые постоянные структуры цитоплазмы, лишенные мембран. Микротрубочки (рис.2.6,Д ) - трубчатые образования различной длины с внешним диаметром 24нм, шириной просвета 15нм и толщиной стенки около 5нм. Встречаются в свободном состоянии в цитоплазме клеток или как структурные элементы жгутиков, ресничек, митотического веретена, центриолей. Свободные микротрубочки и микротрубочки ресничек, жгутиков и центриолей имеют разную устойчивость к разрушающим воздействиям, например химическим (колхицин). Микротрубочки строятся из стереотипных субьединиц белковой природы путем их полимеризации. В живой клетке процессы полимеризации протекают одновременно с процессами деполимеризации. Соотношением этих процессов определяется количество микротрубочек. В свободном состоянии микротрубочки выполняют опорную функцию, определяя форму клеток, а также являются факторами направленного перемещения внутриклеточных компонентов.

Микрофиламентами (рис. 2.6,Е ) называют длинные, тонкие образования, иногда образующие пучки и обнаруживаемые по всей цитоплазме. Существует несколько разных типов микрофиламентов.Актиновые микрофиламенты благодаря присутствию в них сократимых белков (актин) рассматривают в качестве структур, обеспечивающих клеточные формы движения, например амебоидные. Им приписывают также каркасную роль и участие в организации внутриклеточных перемещений органелл и участков гиалоплазмы.

По периферии клеток под плазмалеммой, а также в околоядерной зоне обнаруживаются пучки микрофиламентов толщиной 10нм - промежуточные филстенты. В эпителиальных, нервных, глиальных, мышечных клетках, фибробластах они построены из разных белков. Промежуточные филаменты выполняют, по-видимому, механическую, каркасную функцию.

Актиновые микрофибриллы и промежуточные филаменты, как и микротрубочки, построены из субъединиц. В силу этого их количество зависит от соотношения процессов полимеризации и деполимеризации.

Для животных клеток, части клеток растений, грибов и водорослей характерен клеточный центр, в состав которого входят центриоли.Центриолъ (под электронным микроскопом) имеет вид «полого» цилиндра диаметром около 150нм и длиной 300-500нм. Ее стенка образована 27микротрубочками, сгруппированными в 9триплетов. В функцию центриолей входит образование нитей митотического веретена, которые также образованы микротрубочками. Центриоли поляризуют процесс деления клетки, обеспечивая расхождение сестринских хроматид (хромосом) в анафазе митоза.

Эукариотическая клетка имеет клеточный скелет (цитоскелет) из внутриклеточных волокон (Кольцов) – начало ХХ века, в конце 1970 вновь открыт. Эта структура позволяет клетке иметь свою форму, иногда изменяя ее. Цитоплазма находится в движении. Цитоскелет участвует с процессе переноса органоидов, участвует в регенерации клеток.

Митохондрии – сложные образования с двойной мембраной(0,2-0,7мкм) и разной формой. Внутренняя мембрана имеет кристы. Наружная мембрана проницаема практически для всех химических веществ, внутренняя – только активный транспорт. Между мембранами – матрикс. Митохондрии располагаются там, где необходима энергия. Митохондрии имеют систему рибосом, молекулу ДНК. Возможно возникновение мутаций (более66 заболеваний). Как правило, они связаны с недостаточной энергией АТФ, часто связаны с сердечно-сосудистой недостаточностью, патологиями. Количество митохондрий разное (в клетке трипаносомы- 1 митохондрия). Количество зависит от возраста, функции, активности ткани (печень – более1000).

Лизосомы – тельца, окруженные элементарной мембраной. Содержат 60 ферментов(40 лизосомальных, гидролитических). Внутри лизосомы – нейтральная среда. Активизируются низкими значениями рН, выходя в цитоплазму (самопереваривание). Мембраны лизосом защищают цитоплазму и клетку от разрушения. Образуются в комплексе Гольджи (внутриклеточный желудок, могут перерабатывать отработавшие свое структуры клетки). Есть 4 вида. 1-первичные, 2-4 – вторичные. С помощью эндоцитоза в клетку попадает вещество. Первичная лизосома (запасающая гранула) с набором ферментов, поглощает вещество и образуется пищеварительная вакуоль (при полном переваривании расщепление идет до низкомолекулярных соединений). Непереваренные остатки остаются в остаточных тельцах, которые могут накапливаться (лизосомные болезни накопления). Остаточные тельца, накапливающиеся в эмбриональном периоде, приводят к гаргалеизму, уродствам, мукополисахаридозам. Аутофагирующие лизосомы уничтожают собственные структуры клетки(ненужные структуры). Могут содержать митохондрии, части комплекса Гольджи. Часто образуются при голодании. Могут возникать при воздействии других клеток (эритроциты).

ОСНОВЫ ЦИТОЛОГИИ

I. Общие принципы структурно-функциональной организации клетки и её компоненты. Плазмолемма, её структура и функции.

Клетка – элементарная структурная, функциональная и генетическая единица в составе всех живых организмов.

Морфологическая характеристика клетки варьирует в зависимости от её функции. Процесс, в ходе которого клетки приобретают свои структурные и функциональные свойства и особенности (специализация) - клеточная дифференцировка . Молекулярно-генетические основы дифференцировки – синтез специфических и-РНК и на них – специфических белков.

Клетки всех типов характеризуются сходством общей организации и строения важнейших компонентов.

Каждая клетка эукариот состоит из двух основных компонентов: ядра и цитоплазмы, ограниченных клеточной мембраной (плазмолеммой).

Цитоплазма отделена от внешней среды плазматической мембраной и содержит:

органеллы

включения , погруженные в

клеточный матрикс (цитозоль, гиалоплазма ).

Органеллы постоянные компоненты цитоплазмы, имеющие характерную структуру и специализированные на выполнении определенных функций в клетке.

Включения непостоянные компоненты цитоплазмы, образованные в результате накопления продуктов метаболизма клеток.

ПЛАЗМАТИЧЕСКАЯ МЕМБРАНА (плазмолемма, цитолемма, внешняя клеточная мембрана )

Все клетки эукариотических организмов имеют пограничную мембрану – плазмолемму. Плазмолемма играет роль полупроницаемого селективного барьера , и с одной стороны, отделяет цитоплазму от окружающей клетку среды, а с другой – обеспечивает её связь с этой средой.

Функции плазмолеммы:

Поддержание формы клетки;

Регуляция переноса веществ и частиц в цитоплазму и из неё;

Распознавание данной клеткой других клеток и межклеточного вещества, прикрепление к ним;

Установление межклеточных контактов и передача информации от одной клетки к другой;

Взаимодействие с сигнальными молекулами (гормоны, медиаторы, цитокины) в связи с наличием на поверхности плазмалеммы специфических рецепторов к ним;

Осуществление движения клетки благодаря связи плазмалеммы с сократимыми элементами цитоскелета.

Строение плазмолеммы :

Молекулярное строение плазмолеммы описывается как жидкостно-мозаичная модель: липидный бислой, в который погружены молекулы белков (рис.1.).

Рис.1.

Толщина п лазмолеммы варьирует от 7,5 до10 нм ;

Липидный бислой представлен преимущественно молекулами фосфолипидов состоящими из двух длинных неполярных (гидрофобных) цепей жирных кислот и полярной (гидрофильной) головки. В мембране гидрофобные цепи обращены внутрь бислоя, а гидрофильные головки – кнаружи.

Химический состав плазмолеммы:

· липиды (фосфолипиды, сфинголипиды, холестерин);

· белки;

· олигосахариды , ковалентно связанные с некоторыми из этих липидов и белков (гликопротеины и гликолипиды).

Белки плазмолеммы . Мембранные белки составляют более 50% массы мембран. Они удерживаются в липидном бислое за счет гидрофобных взаимодействий с молекулами липидов.Белки обеспечиваютспецифические свойства мембраны и играют различную биологическую роль:

структурные молекулы;

ферменты;

переносчики;

рецепторы.

Мембранные белки подразделяются на 2 группы: интегральные и периферические:

периферические белки обычно находятся вне липидного бислоя и непрочно связаны с поверхностью мембраны;

интегральные белки представляют собой белки, либо полностью (собственно интегральные белки), либо частично (полуинтегральные белки) погруженные в липидный бислой. Часть белков целиком пронизывает всю мембрану (трансмембранные белки ); они обеспечивают каналы, через которые транспортируется мелкие водорастворимые молекулы и ионы по обе стороны мембраны.

Белки распределены в пределах клеточноймембраны мозаично. Липиды и белки мембран не фиксированы в пределах мембраны, а обладают подвижностью : белки могут перемещаться в плоскости мембран, как бы «плавая» в толще липидного бислоя (как «айсберги в липидном «океане»).

Олигосахариды. Цепочки олигосахаридов, связанные с белковыми частицами (гликопротеины) или с липидами (гликолипиды), могут выступать за пределы наружной поверхности плазмолеммы, и образуют основу гликокаликса , надмембранного слоя, который выявляется под электронным микроскопом в виде рыхлого слоя умеренной электронной плотности.

Углеводные участки придают клетке отрицательный заряд и являются важным компонентом специфических молекул – рецепторов. Рецепторы обеспечивают такие важные процессы в жизнедеятельности клеток, как распознавание других клеток и межклеточного вещества, адгезивные взаимодействия, ответ на действие белковых гормонов, иммунный ответи.т.д.Гликокаликсявляется также местом концентрации многих ферментов, часть которых может образовываться не самой клеткой, а лишь адсорбироваться в слое гликокаликса.

Мембранный транспорт . Плазмолемма – место обмена материала между клеткой и окружающей клетку средой:

Механизмы мембранного транспорта (рис.2) :

Пассивная диффузия;

Облегченная диффузия;

Активный транспорт;

Эндоцитоз.

Рис.2.

Пассивный транспорт – это процесс, который не требует затрат энергии, так как перенос мелких водорастворимых молекул (кислород, углекислый газ, вода) и части ионов осуществляется путем диффузии. Такой процесс малоспецифичен, и зависит от градиента концентрации транспортируемой молекулы.

Облегченный транспорт также зависит от градиента концентрации и обеспечивает перенос более крупных гидрофильных молекул, таких как молекулы глюкозы и аминокислот. Этот процесс пассивный, но требует присутствия белков-переносчиков , обладающих специфичностью в отношении транспортируемых молекул.

Активный транспорт - процесс, при котором перенос молекул осуществляется с помощью белков-переносчиков против электрохимического градиента . Для осуществления этого процесса необходимы затраты энергии, которая высвобождается за счет расщепления АТФ . Примером активного транспорта служит натриево-калиевый насос: посредством белка-переносчика Na+-K+-АТФ-азы ионы Na+ выводятся из цитоплазмы, а ионы К+ одновременно переносятся в неё.

Эндоцитоз - процесс транспорта макромолекул из внеклеточного пространства в клетку. При этом внеклеточный материал захватывается в области впячивания (инвагинации) плазмалеммы, края впячивания затем смыкаются, и таким образом формируется эндоцитозный пузырек (эндосома), окруженный мембраной.

Разновидностями эндоцитоза являются (рис.3):

пиноцитоз,

фагоцитоз,

рецепторно-опосредованный эндоцитоз.

Рис.3 .

Пиноцитоз жидкости вместе с растворимыми в ней веществами («клетка пьёт»). В цитоплазме клетки пиноцитозные пузырьки обычно сливаются с первичными лизосомами, и их содержимое подвергается внутриклеточной обработке.

Фагоцитоз - захват и поглощение клеткой плотных частиц (бактерии, простейшие, грибки, поврежденные клетки, некоторые внеклеточные компоненты).

Фагоцитоз обычно сопровождается образованием выпячиваний цитоплазмы (псевдоподии, филоподии ), которые охватывают плотный материал. Края цитоплазматических отростков смыкаются, и образуются фагосомы . Фагосомы сливаются с лизосомами, образуя фаголизосомы, где ферменты лизосом переваривают биополимеры до мономеров.

Рецепторно-опосредованный эндоцитоз. Рецепторы ко многим веществам, расположены на клеточной поверхности. Эти рецепторы связываются с лигандами (молекулами поглощаемого вещества с высоким сродством к рецептору).

Рецепторы, перемещаясь, могут скапливаться в особых областях, называемых окаймленными ямками . Вокруг таких ямок и образующихся из них окаймленных пузырьков образуется сетевидная оболочка, состоящая из нескольких полипептидов, главный из которых белок клатрин. Окаймленные эндоцитозные пузырьки переносят комплекс рецептор-лиганд внутрь клетки. В дальнейшем, после поглощения веществ, комплекс рецептор-лиганд расщепляется, и рецепторы возвращаются в плазмолемму. С помощью окаймленных пузырьков транспортируются иммуноглобулины, факторы роста, липопротеины низкой плотности (ЛНП).

Экзоцитоз – процесс обратный эндоцитозу. При этом мембранные экзоцитозные пузырьки, содержащие продукты собственного синтеза или непереваренные, вредные вещества, приближаются к плазмалемме и сливаются с ней своей мембраной, которая встраивается в плазмалемму - содержимое экзоцитозного пузырька выделяется во внеклеточное пространство.

Трансцитоз - процесс, объединяющий эндоцитоз и экзоцитоз. На одной поверхности клетки формируется эндоцитозный пузырёк, который переносится к противоположной поверхности клетки и, становясь экзоцитозным пузырьком, выделяет свое содержимое во внеклеточное пространство. Такой процесс характерен для клеток, выстилающих кровеносные сосуды, - эндотелиоцитов, особенно в капиллярах.

Во время эндоцитоза часть плазмолеммы становится эндоцитозным пузырьком; во время экзоцитоза, напротив, мембрана встраивается в плазмолемму. Это явление называется мембранным конвейером.

II. ЦИТОПЛАЗМА. Органеллы. Включения.

Органеллы – постоянно присутствующие в цитоплазме структуры, имеющие определенное строение и специализированные на выполнении определенных (специфических) функций в клетке.

Органеллы подразделяются на:

органеллы общего значения

специальные органеллы .

Органеллы общего значения имеются во всех клетках и необходимы для обеспечения их жизнедеятельности. К ним относятся:

митохондрии,

рибосомы

эндоплазматическая сеть (ЭПС),

комплекс Гольджи