Прямой изгиб плоский поперечный изгиб. Чистый изгиб. Поперечный изгиб. Общие понятия Что такое поперечный изгиб

10.1. Общие понятия и определения

Изгиб – это такой вид нагружения, при котором стержень загружен моментами в плоскостях, проходящих через продольную ось стержня.

Стержень, работающий на изгиб, называется балкой (или брусом). В дальнейшем будем рассматривать прямолинейные балки, поперечное сечение которых имеет хотя бы одну ось симметрии.

В сопротивлении материалов различают изгиб плоский, косой и сложный.

Плоский изгиб – изгиб, при котором все усилия, изгибающие балку, лежат в одной из плоскостей симметрии балки (в одной из главных плоскостей).

Главными плоскоcтями инерции балки называют плоскости, проходящие через главные оси поперечных сечений и геометрическую ось балки (ось x).

Косой изгиб – изгиб, при котором нагрузки действуют в одной плоскости, не совпадающей с главными плоскостями инерции.

Сложный изгиб – изгиб, при котором нагрузки действуют в различных (произвольных) плоскостях.

10.2. Определение внутренних усилий при изгибе

Рассмотрим два характерных случая изгиба: в первом – консольная балка изгибается сосредоточенным моментом Mo; во втором – сосредоточенной силой F.

Используя метод мысленных сечений и составляя уравнения равновесия для отсеченных частей балки, определим внутренние усилия в том и другом случае:

Остальные уравнения равновесия, очевидно, тождественно равны нулю.

Таким образом, в общем случае плоского изгиба в сечении балки из шести внутренних усилий возникает два – изгибающий момент Мz и поперечная сила Qy (или при изгибе относительно другой главной оси – изгибающий момент Мy и поперечная сила Qz).

При этом, в соответствии с двумя рассмотренными случаями нагружения, плоский изгиб можно подразделить на чистый и поперечный.

Чистый изгиб – плоский изгиб, при котором в сечениях стержня из шести внутренних усилий возникает только одно – изгибающий момент (см. первый случай).

Поперечный изгиб – изгиб, при котором в сечениях стержня кроме внутреннего изгибающего момента возникает и поперечная сила (см. второй случай).

Строго говоря, к простым видам сопротивления относится лишь чистый изгиб; поперечный изгиб относят к простым видам сопротивления условно, так как в большинстве случаев (для достаточно длинных балок) действием поперечной силы при расчетах на прочность можно пренебречь.

При определении внутренних усилий будем придерживаться следующего правила знаков:

1) поперечная сила Qy считается положительной, если она стремится повернуть рассматриваемый элемент балки по часовой стрелке;



2) изгибающий момент Мz считается положительным, если при изгибе элемента балки верхние волокна элемента оказываются сжатыми, а нижние – растянутыми (правило зонта).

Таким образом, решение задачи по определению внутренних усилий при изгибе будем выстраивать по следующему плану: 1) на первом этапе, рассматривая условия равновесия конструкции в целом, определяем, если это необходимо, неизвестные реакции опор (отметим, что для консольной балки реакции в заделке можно и не находить, если рассматривать балку со свободного конца); 2) на втором этапе выделяем характерные участки балки, принимая за границы участков точки приложения сил, точки изменения формы или размеров балки, точки закрепления балки; 3) на третьем этапе определяем внутренние усилия в сечениях балки, рассматривая условия равновесия элементов балки на каждом из участков.

10.3. Дифференциальные зависимости при изгибе

Установим некоторые взаимосвязи между внутренними усилиями и внешними нагрузками при изгибе, а также характерные особенности эпюр Q и M, знание которых облегчит построение эпюр и позволит контролировать их правильность. Для удобства записи будем обозначать: M≡Mz, Q≡Qy.

Выделим на участке балки с произвольной нагрузкой в месте, где нет сосредоточенных сил и моментов, малый элемент dx. Так как вся балка находится в равновесии, то и элемент dx будет находиться в равновесии под действием приложенных к нему поперечных сил, изгибающих моментов и внешней нагрузки. Поскольку Q и M в общем случае меняются вдоль

оси балки, то в сечениях элемента dx будут возникать поперечные силы Q и Q+dQ, а также изгибающие моменты M и M+dM. Из условия равновесия выделенного элемента получим

Первое из двух записанных уравнений дает условие

Из второго уравнения, пренебрегая слагаемым q·dx·(dx/2) как бесконечно малой величиной второго порядка, найдем

Рассматривая выражения (10.1) и (10.2) совместно можем получить

Соотношения (10.1), (10.2) и (10.3) называют дифференциальными зависимостями Д. И. Журавского при изгибе.

Анализ приведенных выше дифференциальных зависимостей при изгибе позволяет установить некоторые особенности (правила) построения эпюр изгибающих моментов и поперечных сил: а – на участках, где нет распределенной нагрузки q, эпюры Q ограничены прямыми, параллельными базе, а эпюры M – наклонными прямыми; б – на участках, где к балке приложена распределенная нагрузка q, эпюры Q ограничены наклонными прямыми, а эпюры M – квадратичными параболами.

При этом, если эпюру М строим «на растянутом волокне», то выпуклость параболы будет направлена по направлению действия q, а экстремум будет расположен в сечении, где эпюра Q пересекает базовую линию; в – в сечениях, где к балке прикладывается сосредоточенная сила на эпюре Q будут скачки на величину и в направлении данной силы, а на эпюре М – перегибы, острием направленные в направлении действия этой силы; г – в сечениях, где к балке прикладывается сосредоточенный момент на эпюре Q изменений не будет, а на эпюре М – скачки на величину этого момента; д – на участках, где Q>0, момент М возрастает, а на участках, где Q<0, момент М убывает (см. рисунки а–г).

10.4. Нормальные напряжения при чистом изгибе прямого бруса

Рассмотрим случай чистого плоского изгиба балки и выведем формулу для определения нормальных напряжений для данного случая.

Отметим, что в теории упругости можно получить точную зависи-мость для нормальных напряжений при чистом изгибе, если же решать эту задачу методами сопротивления материалов необходимо ввести некоторые допущения.

Таких гипотез при изгибе три:

а – гипотеза плоских сечений (гипотеза Бернулли) – сечения плоские до деформации остаются плоскими и после деформации, а лишь поворачиваются относительно некоторой линии, которая называется нейтральной осью сечения балки. При этом волокна балки, лежащие с одной стороны от нейтральной оси будут растягиваться, а с другой – сжиматься; волокна, лежащие на нейтральной оси своей длины не изменяют;

б – гипотеза о постоянстве нормальных напряжений – напряжения, действующие на одинаковом расстоянии y от нейтральной оси, постоянны по ширине бруса;

в – гипотеза об отсутствии боковых давлений – соседние продольные волокна не давят друг на друга.

Статическая сторона задачи

Чтобы определить напряжения в поперечных сечениях балки, рассмотрим, прежде всего, статическую сторон у задачи. Применяя метод мысленных сечений и составляя уравнения равновесия для отсеченной части балки, найдем внутренние усилия при изгибе. Как было показано ранее, единственным внутренним усилием, действующим в сечении бруса при чистом изгибе, является внутренний изгибающий момент, а значит здесь возникнут связанные с ним нормальные напряжения.

Связь между внутренними усилиями и нормальными напряжениями в сечении балки найдем из рассмотрения напряжений на элементарной площадке dA, выделенной в поперечном сечении A балки в точке с координатами y и z (ось y для удобства анализа направлена вниз):

Как видим, задача является внутренне статически неопределимой, так как неизвестен характер распределения нормальных напряжений по сечению. Для решения задачи рассмотрим геометрическую картину деформаций.

Геометрическая сторона задачи

Рассмотрим деформацию элемента балки длиной dx, выделенного из изгибаемого стержня в произвольной точке с координатой x. Учитывая принятую ранее гипотезу плоских сечений, после изгиба сечения балки повернуться относительно нейтральной оси (н.о.) на угол dϕ, при этом волокно ab, отстоящее от нейтральной оси на расстояние y, превратится в дугу окружности a1b1, а его длина изменится на некоторую величину. Здесь напомним, что длина волокон, лежащих на нейтральной оси, не изменяется, а потому дуга a0b0 (радиус кривизны которой обозначим ρ) имеет ту же длину, что и отрезок a0b0 до деформации a0b0=dx.

Найдем относительную линейную деформацию εx волокна ab изогнутой балки.

При построении эпюры изгибающих моментов М у строителей при­нято: ординаты, выражающие в определенном масштабе положительные значения изгибающих моментов, откладывать со стороны растянутых волокон, т.е. - вниз , а отрицательные - вверх от оси балки. Поэтому говорят, что строители строят эпюры на растянутых волокнах. У механиков положительные значения и поперечной силы и изгибающего момента откладываются вверх. Механики строят эпюры на сжатых волокнах.

Главные напряжения при изгибе. Эквивалентные напряжения .

В общем случае прямого изгиба в поперечных сечениях балки возникают нормальные и касательные напряжения . Эти напряжения изменяются как по длине, так и по высоте балки.

Таким образом, в случае изгиба имеет место плоское напряженное состояние.

Рассмотрим схему, где балка нагружена силой Р

Наибольшие нормальные напряжения возникают в крайних, наиболее удаленных от нейтральной линии точках, а касательные напряжения в них отсутствуют. Таким образом, для крайних волокон ненулевыми главными напряжениями являются нормальные напряжения в поперечном сечении.

На уровне нейтральной линии в поперечном сечении балки возникают наибольшие касательные напряжения, а нормальные напряжения равны нулю . значит, в волокнах нейтрального слоя главные напряжения определяются значениями касательных напряжений.

В данной расчетной схеме верхние волокна балки будут растянуты, а нижние – сжаты. Для определения главных напряжений используем известное выражение:

Полный анализ напряженного состояния представим на рисунке.

Анализ напряженного состояния при изгибе

Наибольшее главное напряжение σ 1 находится на верхних крайних волокнах и равно нулю на нижних крайних волокнах. Главное напряжение σ 3 имеет наибольшее по абсолютной величине значение на нижних волокнах.

Траектория главных напряжений зависит от типа нагрузки и способа закрепления балки.


При решении задач достаточно отдельно проверить нормальные и отдельно касательные напряжения. Однако иногда наиболее напряженными оказываются промежуточные волокна, в которых имеются и нормальные, и касательные напряжения. Это происходит в сечениях, где одновременно и изгибающий момент, и поперечная сила достигают больших значений — это может быть в заделке консольной балки, на опоре балки с консолью, в сечениях под сосредоточенной силой или в сечениях с резко меняющейся шириной. К примеру, в двутавровом сечении наиболее опасны места примыкания стенки к полке — там имеются значительные и нормальные, и касательные напряжения.

Материал находится в условиях плоского напряженного состояния и требуется проверка по эквивалентным напряжениям.

Условия прочности балок из пластичных материалов по третьей (теории наибольших касательных напряжений) и четвертой (теория энергии формоизменений) теориям прочности.

Как правило,в прокатных балках эквивалентные напряжения не превышают нормальных напряжений в крайних волокнах и специальной проверки не требуется. Другое дело - составные металлические балки, у которых стенка тоньше , чем у прокатных профилей при той же высоте. Чаще применяются сварные составные балки из стальных листов. Расчет подобных балок на прочность: а) подбор сечения — высоты, толщины, ширины и толщины поясов балки; б) проверка прочности по нормальным и касательным напряжениям; в) проверка прочности по эквивалентным напряжениям.

Определение касательных напряжений в двутавровом сечении . Рассмотрим сечение двутавра. S x =96,9 см 3 ; Yх=2030 см 4 ; Q=200 кН

Для определения касательного напряжения применяется формула ,где Q — поперечная сила в сечении, S x 0 – статический момент части поперечного сечения, расположенной по одну сторону от слоя, в котором определяются касательные напряжения, I x – момент инерции всего поперечного сечения, b – ширина сечения в том месте, где определяется касательное напряжение

Вычислим максимальное касательное напряжение:

Вычислим статический момент для верхней полки:

Теперь вычислим касательные напряжения:

Строим эпюру касательных напряжений:

Рассмотрим сечение стандартного профиля в виде двутавра и определим касательные напряжения , действующие параллельно поперечной силе:

Рассчитаем статические моменты простых фигур:

Эту величину можно вычислить и иначе , используя то обстоятельство, что для двутаврового и корытного сечения в дан статический момент половины сечения. Для этого необходимо вычесть из известной величины статического момента величину статического момента до линии А 1 В 1:

Касательные напряжения в месте примыкания полки к стенке изменяются скачкообразно , так как резко изменяется толщина стенки от t ст до b .

Эпюры касательных напряжений в стенках корытного, полого прямоугольного и других сечений имеют тот же вид, что и в случае двутаврового сечения. В формулу входит статический момент заштрихованной части сечения относительно оси Х, а в знаменателе ширина сечения (нетто) в том слое, где определяется касательное напряжение.

Определим касательные напряжения для круглого сечения.

Так как у контура сечения касательные напряжения должны быть направлены по касательной к контуру, то в точках А и В у концов какой-либо параллельной диаметру хорде АВ, касательные напряжения направлены перпендикулярно радиусам ОА и ОВ. Следовательно, направления касательных напряжений в точках А , В, К сходятся в некоторой точке Н на оси Y.

Статический момент отсеченной части:

То есть касательные напряжения меняются по параболическому закону и будут максимальны на уровне нейтральной линии, когда у 0 =0

Формула для определения касательных напряжений (формула )

Рассмотрим прямоугольное сечение

На расстоянии у 0 от центральной оси проведем сечение 1-1 и определим касательные напряжения. Статический момент площади отсеченной части:

Следует иметь в виду, что принципиально безразлично , брать статический момент площади заштрихованной или остальной части поперечного сечения. Оба статических момента равны и противоположны по знаку , поэтому их сумма, которая представляет статический момент площади всего сечения относительно нейтральной линии, а именно центральной оси х, будет равна нулю.

Момент инерции прямоугольного сечения:

Тогда касательные напряжения по формуле

Переменная у 0 входит в формулу во второй степени, т.е. касательные напряжения в прямоугольном сечении изменяются по закону квадратной параболы.

Касательные напряжения достигнут максимума на уровне нейтральной линии, т.е. когда у 0 =0:

, где А -площадь всего сечения.

Условие прочности по касательным напряжениям имеет вид:

, где S x 0 – статический момент части поперечного сечения, расположенной по одну сторону от слоя, в котором определяются касательные напряжения, I x – момент инерции всего поперечного сечения, b – ширина сечения в том месте, где определяется касательное напряжение,Q -поперечная сила, τ — касательное напряжение, [τ] — допускаемое касательное напряжение.

Данное условие прочности позволяет производить три вида расчета (три типа задач при расчете на прочность):

1. Проверочный расчет или проверка прочности по касательным напряжениям:

2. Подбор ширины сечения (для прямоугольного сечения):

3.Определение допускаемой поперечной силы (для прямоугольного сечения):

Для определения касательных напряжений рассмотрим балку, нагруженную силами.

Задача по определению напряжений всегда статически неопределима и требует привлечения геометрических и физических уравнений. Однако можно принять такие гипотезы о характере распределения напряжений , что задача станет статически определимой.

Двумя бесконечно близкими поперечными сечениями 1-1 и 2-2 выделим элемент dz, изобразим его в крупном масштабе, затем проведем продольное сечение 3-3.

В сечениях 1–1 и 2–2 возникают нормальные σ 1 , σ 2 напряжения , которые определяются по известным формулам:

где М — изгибающий момент в поперечном сечении, dМ — приращение изгибающего момента на длине dz

Поперечная сила в сечениях 1–1 и 2–2 направлена вдоль главной центральной оси Y и, очевидно, представляет сумму вертикальных составляющих внутренних касательных напряжений, распределенных по сечению . В сопротивлении материалов обычно принимается допущение о равномерном их распределении по ширине сечения.

Для определения величины касательных напряжений в какой-либо точке поперечного сечения, расположенного на расстоянии у 0 от нейтральной оси Х, проведем через эту точку плоскость, параллельную нейтральному слою (3-3), и вынесем отсеченный элемент. Будем определять напряжение, действующее по площадке АВСД.

Спроецируем все силы на ось Z

Равнодействующая внутренних продольных сил по правой грани будет равна:

где А 0 – площадь фасадной грани, S x 0 – статический момент отсеченной части относительно оси Х . Аналогично на левой грани:

Обе равнодействующие направлены навстречу друг другу, поскольку элемент находится в сжатой зоне балки. Их разность уравновешивается касательными силами на нижней грани 3-3.

Предположим, что касательные напряжения τ распределены по ширине поперечного сечения балки b равномерно . Такое допущение тем вероятнее, чем меньше ширина по сравнению с высотой сечения. Тогда равнодействующая касательных сил dT равна значению напряжений, умноженному на площадь грани:

Составим теперь уравнение равновесия Σz=0:

или, откуда

Вспомним дифференциальные зависимости , согласно которым Тогда получаем формулу:

Эта формула получила название формулы . Эта формула получена в 1855 г. Здесь S x 0 – статический момент части поперечного сечения, расположенной по одну сторону от слоя, в котором определяются касательные напряжения, I x – момент инерции всего поперечного сечения, b – ширина сечения в том месте, где определяется касательное напряжение, Q -поперечная сила в сечении.

— условие прочности при изгибе, где

- максимальный момент (по модулю) с эпюры изгибающих моментов; - осевой момент сопротивления сечения,геометрическая характеристика; - допускаемое напряжение (σ adm)

- максимальное нормальное напряжение.

Если расчет ведется по методу предельных состояний ,то в расчет вместо допускаемого напряжения вводится расчетное сопротивление материала R.

Типы расчетов на прочность при изгибе

1. Проверочный расчет или проверка прочности по нормальным напряжениям

2. Проектный расчет или подбор сечения

3. Определение допускаемой нагрузки (определение грузоподъемност и или эксплуатационной несущей способности)

При выводе формулы для вычисления нормальных напряжений рассмотрим такой случай изгиба, когда внутренние силы в сечениях балки приводятся только к изгибающему моменту , а поперечная сила оказывается равной нулю . Этот случай изгиба носит название чистого изгиба . Рассмотрим средний участок балки, подвергающийся чистому изгибу.

В нагруженном состоянии балка прогибается так,что ее нижние волокна удлиняются,а верхние укорачиваются.

Поскольку часть волокон балки растягивается, а часть сжимается, причем переход от растяжения к сжатию происходит плавно, без скачков , в средней части балки находится слой, волокна которого только искривляются, но не испытывают ни растяжения, ни сжатия. Такой слой называют нейтральным слоем. Линия, по которой нейтральный слой пересекается с поперечным сечением балки, называется нейтральной линией или нейтральной осью сечения. Нейтральные линии нанизаны на ось балки. Нейтральная линия — это линия, в которой нормальные напряжения равны нулю.

Линии, проведенные на боковой поверхности балки перпендикулярно оси, остаются плоскими при изгибе. Эти опытные данные позволяют положить в основу выводов формул гипотезу плоских сечений (гипотеза ) . Согласно этой гипотезе сечения балки плоские и перпендикулярные к ее оси до изгиба, остаются плоскими и оказываются перпендикулярными изогнутой оси балки при ее изгибе.

Допущения для вывода формул нормального напряжения: 1) Выполняется гипотеза плоских сечений. 2) Продольные волокна друг на друга не давят (гипотеза о ненадавливании) и, следовательно, каждое из волокон находится в состоянии одноосного растяжения или сжатия. 3) Деформации волокон не зависят от их положения по ширине сечения. Следовательно, и нормальные напряжения, изменяясь по высоте сечения, остаются по ширине одинаковыми. 4) Балка имеет хотя бы одну плоскость симметрии, и все внешние силы лежат в этой плоскости. 5) Материал балки подчиняется закону Гука, причем модуль упругости при растяжении и сжатии одинаков. 6) Соотношения между размерами балки таковы, что она работает в условиях плоского изгиба без коробления или скручивания.

Рассмотрим балку произвольного сечения, но имеющую ось симметрии.Изгибающий момент представляет собой результирующий момент внутренних нормальных сил , возникающих на бесконечно малых площадках и может быть выражен в интегральном виде: (1), где y — плечо элементарной силы относительно оси х

Формула (1) выражает статическую сторону задачи об изгибе прямого бруса, но по ней по известному изгибающему моменту нельзя определить нормальные напряжения, пока не установлен закон их распределения.

Выделим на среднем участке балки и рассмотрим участок длиной dz, подвергающийся изгибу. Изобразим его в укрупненном масштабе.

Сечения, ограничивающие участок dz, параллельны друг другу до деформации , а после приложения нагрузки повернутся вокруг своих нейтральных линий на угол . Длина отрезка волокон нейтрального слоя при этом не изменится и будет равна:, где -это радиус кривизны изогнутой оси балки. А вот любое другое волокно, лежащее ниже или выше нейтрального слоя, изменит свою длину . Вычислим относительное удлинение волокон, находящихся от нейтрального слоя на расстоянии у. Относительное удлинение — это отношение абсолютной деформации к первоначальной длине,тогда:

Сократим на и приведем подобные члены, тогда получим:(2) Эта формула выражает геометрическую сторону задачи о чистом изгибе: деформации волокон прямо пропорциональны их расстояниям до нейтрального слоя.

Теперь перейдем к напряжениям , т.е. будем рассматривать физическую сторону задачи. в соответствии с допущением о ненадавливании волокон используем при осевом растяжении-сжатии:, тогда с учетом формулы (2) имеем (3), т.е. нормальные напряжения при изгибе по высоте сечения распределяются по линейному закону . На крайних волокнах нормальные напряжения достигают максимального значения, а в центре тяжести сечения равны нулю. Подставим (3) в уравнение (1) и вынесем за знак интеграла дробь как постоянную величину, тогда имеем. Но выражение - это осевой момент инерции сечения относительно оси х - I х . Его размерность см 4 , м 4

Тогда ,откуда (4) ,где - это кривизна изогнутой оси балки, а - жесткость сечения балки при изгибе.

Подставим полученное выражение кривизны (4) в выражение (3) и получим формулу для вычисления нормальных напряжений в любой точке поперечного сечения: (5)

Т.о. максимальные напряжения возникают в точках, наиболее удаленных от нейтральной линии. Отношение (6) называют осевым моментом сопротивления сечения . Его размерность см 3 , м 3 . Момент сопротивления характеризует влияние формы и размеров поперечного сечения на величину напряжений.

Тогда максимальные напряжения: (7)

Условие прочности при изгибе: (8)

При поперечном изгибе действуют не только нормальные, но и касательные напряжения ,т.к. имеется поперечная сила . Касательные напряжения усложняют картину деформирования , они приводят к искривлению поперечных сечений балки, в результате чего нарушается гипотеза плоских сечений . Однако исследования показывают, что искажения, которые привносят касательные напряжения, незначительно влияют на нормальные напряжения,подсчитанные по формуле (5) . Таким образом,при определении нормальных напряжений в случае поперечного изгиба теория чистого изгиба вполне применима.

Нейтральная линия. Вопрос о положении нейтральной линии.

При изгибе отсутствует продольная сила, поэтому можно записать Подставим сюда формулу нормальных напряжений (3) и получим Так как модуль продольной упругости материала балки не равняется нулю и изогнутая ось балки имеет конечный радиус кривизны, остается положить, что этот интеграл представляет собой статический момент площади поперечного сечения балки относительно нейтральной линии-оси х , и, поскольку он равен нулю, то нейтральная линия проходит через центр тяжести сечения.

Условие (отсутствие момента внутренних сил относительно силовой линии) даст или с учетом (3) . По тем же соображениям (см. выше) . В подынтегральном выражении — центробежный момент инерции сечения относительно осей х и у равен нулю , значит, эти оси являются главными и центральными и составляют прямой угол. Следовательно, силовая и нейтральная линии пр прямом изгибе взаимно перпендикулярны.

Установив положение нейтральной линии , несложно построить эпюру нормальных напряжений по высоте сечения. Ее линейный характер определяется уравнением первой степени.

Характер эпюры σ для симметричных сечений относительно нейтральной линии, М<0

Силы, действующие перпендикулярно к оси бруса и располо­женные в плос-кости, проходящей через эту ось, вызывают дефор­мацию, называемую попереч-ным изгибом . Если плоскость действия упомянутых сил главная плоскость, то имеет место прямой (плоский) поперечный изгиб. В противном случае изгиб называет­ся косым поперечным. Брус, подверженный преимущественно из­гибу, называется балкой 1 .

По существу поперечный изгиб есть сочетание чистого изги­ба и сдвига. В связи с искривлением поперечных сечений из-за неравномерности распределе-ния сдвигов по высоте возникает вопрос о возможности применения формулы нормального напряжения σ х , выведенной для чистого изгиба на основании гипотезы плоских сечений.

1 Однопролетная балка, имеющая по концам соответственно одну цилиндрическую неподвижную опору и одну цилиндрическую подвижную в направлении оси балки, называется простой . Балка с одним защемленным и другим свободным концом называется консолью . Простая балка, имеющая одну или две части, свешивающиеся за опору, называется консольной .

Если, кроме того, сечения взяты далеко от мест приложения нагрузки (на расстоянии, не меньшем половины высоты сечения бруса), то можно, как и в случае чистого изгиба, считать, что волокна не оказывают давления друг на друга. Значит, каждое волокно испытывает одноосное растяжение или сжатие.

При действии распределенной нагрузки поперечные силы в двух смежных сечениях будут отличаться на величину, рав­ную qdx . Поэтому искривления сечений будут также несколько отличаться. Кроме того, волокна будут оказывать давление друг на друга. Тщательное исследование вопроса показывает, что если длина бруса l достаточно велика по сравнению с его высотой h (l / h > 5), то и при распределенной нагрузке указанные факторы не оказывают существенного влияния на нормальные напряжения в поперечном сечении и потому в практических расчетах могут не учитываться.

а б в

Рис. 10.5 Рис. 10.6

В сечениях под сосредоточенными грузами и вблизи них распределение σ х отклоняется от линейного закона. Это отклонение, носящее местный характер и не сопровождающееся увеличением наибольших напряжений (в крайних волокнах), на практике обычно не принимают во внимание.

Таким образом, при поперечном изгибе (в плоскости ху ) нор­мальные напряжения вычисляются по формуле

σ х = [М z (x )/I z ]y .

Если проведем два смежных сечения на участке бруса, свободном от нагрузки, то поперечная сила в обоих сечениях будет одинакова, а значит, одинаково и искривление сечений. При этом какой-либо отрезок волокна ab (рис.10.5) переместится в новое положение a"b" , не претерпев дополнительного удлинения, и следовательно, не меняя величину нормального напряжения.

Определим касательные напряжения в поперечном сечении через парные им напряжения, действующие в продольном сечении бруса.

Выделим из бруса элемент длиной dx (рис. 10.7 а). Проведём горизонта-льное сечение на расстоянии у от нейтральной оси z , разделившее элемент на две части (рис. 10.7) и рассмотрим равновесие верхней части, имеющей основа-

ние шириной b . В соответствии с законом парности касательных напряжений, напряжения действующие в продольном сечении равны напряжениям, действующим в поперечном сечении. С учётом этого в предположении о том, что касательные напряжения в площадке b распределены равномерно ис-пользуем условие ΣХ = 0, получим:

N * - (N * +dN *)+

где: N * - равнодействующая нормальных сил σв левом поперечном сече-нии элемента dx в пределах “отсечённой” площадки А * (рис. 10.7 г):

где: S=- статический момент “отсечённой” части поперечного сече-ния (заштрихованная площадь на рис. 10.7 в). Следовательно, можно записать:

Тогда можно записать:

Эта формула была получена в XIX веке русским ученым и инженером Д.И. Журавским и носит его имя. И хотя эта формула приближенная, так как усредняет напряжение по ширине сечения, но полученные результаты расчета по ней, неплохо согласуются с экспериментальными данными.

Для того, чтобы определить касательные напряжения в произвольной точке сечения отстоящей на расстоянии y от оси z следует:

Определить из эпюры величину поперечной силы Q, действующей в сечении;

Вычислить момент инерции I z всего сечения;

Провести через эту точку плоскость параллельную плоскости xz и определить ширину сечения b ;

Вычислить статический момент отсеченной площади Sотносительно главной центральной оси z и подставить найденные величины в формулу Жура-вского.

Определим в качестве примера касательные напряжения в прямоуголь-ном поперечном сечении (рис. 10.6, в). Статический момент относительно оси z части сечения выше линии 1-1, на которой определяется напряжения запишем в виде:

Он изменяется по закону квадратной параболы. Ширина сечения в для прямоугольного бруса постоянна, то параболическим будет и закон изменения касательных напряжений в сечении (рис.10.6, в). При y =и у = − каса-тельные напряжения равны нулю, а на нейтральной оси z они достигают наибольшего значения.

Для балки круглого поперечного сечения на нейтральной оси имеем.

Классификация видов изгиба стержня

Изгибом называют такой вид деформации, при котором в поперечных сечениях стержня возникают изгибающие моменты. Стержень, работающий на изгиб, принято называть балкой. Если изгибающие моменты - единственные внутренние силовые факторы в поперечных сечениях, то стержень испытывает чистый изгиб. Если же изгибающие моменты возникают совместно с поперечными силами, то такой изгиб называют поперечным.

На изгиб работают балки, оси, валы и другие детали конструкций.

Введем некоторые понятия. Плоскость, проходящая через одну из главных центральных осей сечения и геометрическую ось стержня, называется главной плоскостью. Плоскость, в которой действуют внешние нагрузки, вызывающие изгиб балки, называется силовой плоскостью. Линия пересечения силовой плоскости с плоскостью поперечного сечения стержня носит название силовой линии. В зависимости от взаимного расположения силовой и главных плоскостей балки различают прямой или косой изгиб. Если силовая плоскость совпадает с одной из главных плоскостей, то стержень испытывает прямой изгиб (рис. 5.1, а ), если же не совпадает - косой (рис. 5.1, б).

Рис. 5.1. Изгиб стержня: а - прямой; б - косой

С геометрической точки зрения изгиб стержня сопровождается изменением кривизны оси стержня. Первоначально прямолинейная ось стержня становится криволинейной при его изгибе. При прямом изгибе изогнутая ось стержня лежит в силовой плоскости, при косом - в плоскости, отличной от силовой.

Наблюдая за изгибом резинового стержня, можно заметить, что часть его продольных волокон растягивается, а другая часть сжимается. Очевидно, между растянутыми и сжатыми волокнами стержня существует слой волокон, не испытывающих ни растяжения, ни сжатия, - так называемый нейтральный слой. Линия пересечения нейтрального слоя стержня с плоскостью его поперечного сечения называется нейтральной линией сечения.

Как правило, действующие на балку нагрузки можно отнести к одному из трех видов: сосредоточенные силы Р, сосредоточенные моменты М распределенные нагрузки интенсивностью ц (рис. 5.2). Часть I балки, расположенную между опорами, называют пролетом, часть II балки, расположенную по одну сторону от опоры, - консолью.

Прямой изгиб – это вид деформации, при котором в поперечных сечениях стержня возникают два внутренних силовых фактора: изгибающий момент и поперечная сила.

Чистый изгиб – это частный случай прямого изгиба, при котором в поперечных сечениях стержня возникает только изгибающий момент, а поперечная сила равна нулю.

Пример чистого изгиба – участок CD на стержне AB . Изгибающий момент – это величина Pa пары внешних сил, вызывающая изгиб. Из равновесия части стержня слева от поперечного сечения mn следует, что внутренние усилия, распределенные по этому сечению, статически эквивалентны моменту M , равному и противоположно направленному изгибающему моменту Pa .

Чтобы найти распределение этих внутренних усилий по поперечному сечению, необходимо рассмотреть деформацию стержня.

В простейшем случае стержень имеет продольную плоскость симметрии и подвергается действию внешних изгибающих пар сил, находящихся в этой плоскости. Тогда изгиб будет происходить в той же плоскости.

Ось стержня nn 1 – это линия, проходящая через центры тяжести его поперечных сечений.

Пусть поперечное сечение стержня – прямоугольник. Нанесем на его грани две вертикальные линии mm и pp . При изгибе эти линии остаются прямолинейными и поворачиваются так, что остаются перпендикулярными продольным волокнам стержня.

Дальнейшая теория изгиба основана на допущении, что не только линии mm и pp , но все плоское поперечное сечение стержня остается после изгиба плоским и нормальным к продольным волокнам стержня. Следовательно, при изгибе поперечные сечения mm и pp поворачиваются относительно друг друга вокруг осей, перпендикулярных плоскости изгиба (плоскости чертежа). При этом продольные волокна на выпуклой стороне испытывают растяжение, а волокна на вогнутой стороне – сжатие.

Нейтральная поверхность – это поверхность, не испытывающая деформации при изгибе. (Сейчас она расположена перпендикулярно чертежу, деформированная ось стержня nn 1 принадлежит этой поверхности).

Нейтральная ось сечения – это пересечение нейтральной поверхности с любым с любым поперечным сечением (сейчас тоже расположена перпендикулярно чертежу).

Пусть произвольное волокно находится на расстоянии y от нейтральной поверхности. ρ – радиус кривизны изогнутой оси. Точка O – центр кривизны. Проведем линию n 1 s 1 параллельно mm . ss 1 – абсолютное удлинение волокна.

Относительное удлинение ε x волокна

Из этого следует, что деформации продольных волокон пропорциональны расстоянию y от нейтральной поверхности и обратно пропорциональны радиусу кривизны ρ .

Продольное удлинение волокон выпуклой стороны стержня сопровождается боковым сужением , а продольное укорочение вогнутой стороны – боковым расширением , как в случае простого растяжения и сжатия. Из-за этого вид всех поперечных сечений меняется, вертикальные стороны прямоугольника становятся наклонными. Деформация в боковом направлении z :



μ – коэффициент Пуассона.

Вследствие такого искажения все прямые линии поперечного сечения, параллельные оси z , искривляются так, чтоб остаться нормальными к боковым сторонам сечения. Радиус кривизны этой кривой R будет больше, чем ρ в таком же отношении, в каком ε x по абсолютной величине больше чем ε z , и мы получим

Этим деформациям продольных волокон отвечают напряжения

Напряжение в любом волокне пропорционально его расстоянию от нейтральной оси n 1 n 2 . Положение нейтральной оси и радиус кривизны ρ – две неизвестные в уравнении для σ x – можно определить из условия, что усилия, распределенные по любому поперечному сечению, образуют пару сил, которая уравновешивает внешний момент M .

Все вышесказанное также справедливо, если стержень не имеет продольную плоскость симметрии, в которой действует изгибающий момент, лишь бы только изгибающий момент действовал в осевой плоскости, которая заключает в себе одну из двух главных осей поперечного сечения. Эти плоскости называются главными плоскостями изгиба .

Когда имеется плоскость симметрии и изгибающий момент действует в этой плоскости, прогиб происходит именно в ней. Моменты внутренних усилий относительно оси z уравновешивают внешний момент M . Моменты усилий относительно оси y взаимно уничтожаются.