Циркуляция воды в котлах. Циркуляционный контур котла

К принудительной циркуляции прибегают в тех случаях, когда естественную циркуляцию осуществить нельзя. Это происходит с повышением давления, так как при этом разность плотностей пара и воды уменьшается(выше 18 МПа). В котлах с многократной принудительной циркуляцией движение воды в пароводяной смеси осуществляется циркуляционным насосом (рис. 2.3 или 6-2 учеб). Питательная вода через водяной экономайзер подается в барабан, из которого она забирается циркуляционным насосом 6 и направляется в нижние коллекторы экранов и нижние коллекторы конвективной поверхности нагрева, распределяясь по подъемным трубам. Из труб пароводяная эмульсия поступает в барабан котла, в котором происходит отделение пара от воды. Из барабана пар поступает в пароперегреватель, а из него в паропровод потребителей.

Кратность циркуляции составляет 4-6. Надежность циркуляции напрямую зависит от насоса, работающего при температуре котловой воды и давлении в парогенераторе.

Для равномерного распределения воды по отдельным трубам в каждую трубу устанавливается дроссельная шайба соответствующего размера. Парогенераторы с многократной принудительной циркуляцией не нашли применения в промышленных установках.

Принудительная циркуляция может быть осуществлена по прямоточном принципу, который применяется в водогрейных и паровых котлах (рис.2.4 или 6-3 учеб). В такой схеме вода превращается в перегретый пар при однократном проходе через змеевик. В такой схеме параллельно включают ряд труб. В ВЭК вода нагревается до температуры, на 50-60 К меньше температуры насыщения. Затем поступает в радиационную часть, где превращается во влажный пар со степенью сухостью 80%. Далее пар поступает в переходную зону, где превращается во влажный, а затем слабо перегретый пар (на 50-60К). В пароперегревателях происходит перегрев пара. Все современные теплофикационные котлы работают по прямоточному принципу. Они включаются непосредственно в систему теплоснабжения, сетевой насос обеспечивает движение воды.

При работе водогрейных котлов недопустимо закипание жидкости в отдельных обогреваемых трубах (это может привести к гидравлических ударам и вывести котел из строя). Опасно также и поверхностное кипение – образование пузырьков пара на внутренней поверхности труб при средней температуре ниже температуры кипения, приводящее к отложению накипи и гидравлическим ударам. Это возможно при увеличении температуры стенки больше температуры насыщения. Для предупреждения этого необходимо поддержание определенной скорости воды (1-2 м/с) при ее недогреве до температуры кипения на 30-35 К. Однако, неоправданное увеличение скорости воды в трубах повышает гидравлическое сопротивление, что ухудшает работу всей системы (перерасход Эл.энергии, недостаточный напор насосов). Т.е. важно выбрать минимально допустимые скорости воды, при которых не будет поверхностного кипения и нарушения работы котла.

Конец работы -

Эта тема принадлежит разделу:

Конспект лекции по дисциплине: Топливо и топология устройства. Основы теории горения

Конспект лекции по дисциплине... Введение Главным источником производства тепловой и электрической энергии являются тепловые электрические станции ТЭС на которых за счет использования...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Конспект лекции по дисциплине
«КОТЕЛЬНЫЕ УСТАНОВКИ»

Виды топлива. Основные характеристики топлива
Вещества, способные в процессе каких-либо преобразований выделять энергию, которую можно технически использовать, называют топливом. Различают ядерное и химическое топливо. Ядерное топливо выделяет

Основные характеристики твердого топлива
Основными видами твердого топлива является торф и ископаемые угли, которые образовались в процессе углефикации отмершей растительной массы (древесина, листья, хвоя и т.д.). Отмершие части растений

Основные характеристики жидкого топлива
Природным жидким топливом является сырая нефть – это смесь жидких углеводородов различного состава, в которых могут быть растворены твердые углеводороды. Но как топливо сырая нефть не используется.

Основные характеристики газообразного топлива
Газообразное топливо делится на естественное и искусственное. Естественное – природный газ и попутный газ, выделяющей при извлечение нефти на поверхность. Искусственное – генераторный (получают пут

Особенности сжигания твердого, жидкого и газообразного топлива
Согласно теории горения процесс горения протекает в следующем порядке: подготовка топлива к вводу в топку (сортировка по фракциям, дробление, при факельном сжигании – размол). Жидкое

Теоретический и действительный объемы воздуха для сжигания топлива
В паровых и водогрейных котлах при сжигании топлива в качестве окислителя используется воздух. Зная количество воздуха, необходимое для горения 1 кг (или 1 м3) каждого горючего элемента

Присосы воздуха по газовому тракту
Газовый тракт котла работает под разряжением и через неплотности в обмуровке происходят присосы воздуха в котельный агрегат (см.рис.1.4.). В результате этого коэффициент избытка воздуха по мере дви

Теоретический и действительный объемы продуктов сгорания
Состав продуктов сгорания при сжигании 1 кг твердого или жидкого топлива или 1 м3 газа: . Все продукты сгорания

Теоретическая и действительная энтальпия воздуха и продуктов сгорания
Количество теплоты, содержащееся в воздухе или продуктах сгорания, называют энтальпией (теплосодержанием). Энтальпия воды и водяного пара обознается

Общее понятие о тепловом балансе. Располагаемая и полезная теплота
При работе парового или водогрейного котла вся полученная в результате сжигания топлива теплота расходуется на получение пара или воды требуемых параметров и на покрытие тепловых потерь. Н

Характеристика потерь теплоты в котельном агрегате
1. Потери теплоты с уходящими газами возникают вследствие того, что продукты сгорания после прохождения газового тракта не охлаждаются до температуры окружающей среды. Это наибольшая составляющая и

Коэффициент полезного действия котельного агрегата
КПД котла – это отношение полезной работы к располагаемой. Для котельного агрегата различают КПД брутто и КПД нетто. КПД брутто определяют по выработанной теплоте, а КПД нетто по отпущенной к потре

Слоевые топки с движущейся колосниковой решеткой и перемещающимся слоем топлива
В топках с движущейся колосниковой решеткой (рис.1.7.а, или 5-1-в-г учеб) топливо из топливного бункера через угольные ящики 4 и регулятор толщины слоя 5 под действием собственного веса поступает н

Типы цепных решеток
В зависимости от типа колосников цепные решетки делятся на следующие виды: 1. ленточные цепные решетки, у которых колосники соединены между собой штырями; 2. бимсовые цепные решет

Слоевые топки с неподвижной колосниковой решеткой и перемещающимся слоем топлива
К топкам с неподвижной колосниковой решеткой и движущимся слоем топлива относятся топки с шурующей планкой, топка с нижней подачей, шахтная

Свойства и характеристика угольной пыли
Угольная пыль состоит из частиц размером до 300мкм с преобладанием мелких фракций (больше всего частиц размером от 20 до 50 мкм). Форма пылинок неправильная и зависит от рода топлива. Осно

Схемы пылеприготовления
Для превращения твердого топлива в пыль необходимо осуществить следующие операции: 1. первичную обработку - удаление из топлива металлических предметов с помощью магнитных сепараторов (для

Углеразмольные мельницы
Превращение топлива в пыль производится в мельницах, которые принято классифицировать по принципу измельчения топлива и скорости вращения подвижной части (см.табл.1.7). Табл.1.7.

Питатели дробленого угля
Подача топлива в мельницы производится питателями топлива. Тип и конструкция питателя зависят от влажности топлива. Для сухих топлив применяют дисковые питатели, для влажных – скребковые.

Сепараторы
Отделение крупных частиц от мелких, готовых для сжигания, производится в сепараторах. В зависимости от типа и производительности мельницы, свойств сжигаемого топлива применяются гравитационные, ине

Пылеугольные топки
Пылеугольная топка состоит из пылеугольных горелок и топочной камеры. Пылеугольная горелка предназначена для организованного ввода угольной пыли и воздуха в топочную камеру. Различают вихревые и пр

Топки для сжигания жидкого топлива
Для сжигания мазута необходима его предварительная подготовка: уменьшение вязкости и распыление. Горению топлива должно предшествовать его испарение, смешение с окислителем, прогрев горючей смеси.

Топки для сжигания газа
Топки для сжигания газа по конструкции аналогичны топкам для сжигания мазута. В них можно одновременно сжигать газ и жидкое топливо. Подготовка природного газа для его сжигания производится в газог

Вихревые топки
Вихревой метод сжигания используется в настоящее время в циклонных топках с горизонтальными и вертикальными циклонами. Для промышленных КУ применяют топки с горизонтальными циклонами при сжигании т

Теплообмен в элементах котельного агрегата
Расчет топочной камеры выполняется с целью выявления экономичности и надежности ее работы. Экономичность характеризуется минимальными потерями теплоты от химической и механической неполноты горения

Порядок расчета топочных камер
При выполнении поверочного расчета топки известны: объем топочной камеры, степень ее экранирования и площадь радиационных поверхностей нагрева, конструктивные характеристики труб экранных и конвект

Образование пара
Образования пара в КА происходит при постоянном давлении и непрерывном подводе теплоты от продуктов сгорания к воде. Процесс образования пара состоит из трех стадий: подогрев воды до температуры на

Естественная циркуляция в испарительных поверхностях нагрева
Надежная работа поверхностей нагрева котла может быть только при хорошем охлаждении стенки труб, расположенных в зоне высоких температур продуктов сгорания. Охлаждение производится

Сепарационные устройства
Предохранение внутренних поверхностей нагрева от отложений возможно только при минимальном количестве примесей. В насыщенный пар примеси попадают с капельками котловой воды, содержащей соли. Для ум

Условия надежной работы поверхностей нагрева
Надежная работа поверхностей нагрева может быть обеспечена только при устойчивой циркуляции охлаждающей среды. Наиболее интенсивно охлаждает трубы воды, мене интенсивно – пар. При превышении темпер

Основные направления развития котлов
Появление первых паровых котлов связано с простым цилиндрическим агрегатом, показанном на рис.2.9, а или 7-1, а учеб. Он состоит из цилиндрического барабана с эллиптическими днищами. В верхней част

Котлоагрегаты специального назначения
Котлоагрегаты, встроенные в технологическую цепь при производстве каких-либо продуктов, называются технологическими агрегатами. Энерготехнологический котел СЭТА-Ц-100 (для сжигания 100 т/с

Теплофикационные водогрейные котлы
Для теплоснабжения промышленных предприятий и жилищно-коммунального сектора в настоящее время одновременно с комбинированной выработкой электрической и тепловой энергии на ТЭЦ широко распространены

Пароводогрейные котлы
Для одновременной выработки технологического пара и перегретой воды для отопления, горячего водоснабжения и вентиляции используют комбиниров

Регулирование температуры пара
В промышленных котлах колебания перегрева пара при изменении нагрузки существенно на работу теплоиспользующих аппаратов не влияют. Поэтому в них нет устройств, регулирующих перегрев пара. У энергет

Назначение и типы водяных экономайзеров
Водяной экономайзер (ВЭК) предназначен для нагрева питательной воды продуктами сгорания. В зависимости от температуры, до которой вода подог

Схемы включения некипящих и кипящих экономайзеров
В соответствии с требованиями Правил Котлонадзора чугунные экономайзеры должны быть отключаемыми по водяному тракту и по тракту продуктов сгорания (иметь обводной мимо ВЭК газоход для продуктов сго

Назначение, типы и схемы включения воздухоподогревателей
В современных котлах, особенно при сжигании влажных топлив, широко применяются ВЗП. Подача горячего воздуха в топку котла ускоряет воспламенение топлива и интенсифицирует процесс горения, уменьшая

Обдувка и обмывка поверхностей нагрева
Для удаления отложений с поверхности нагрева применяют обдувочные аппараты. Обдувка может производиться горячим паром и холодной водой или сжатым воздухом. Принципы действия обдувочного аппарата: э

Дробевая очистка поверхности нагрева
Для очистки конвективных и хвостовых поверхностей нагрева (водяные экономайзеры и воздухоподогреватели) от связанных плотных отложений прим

Коррозия поверхностей нагрева
Разрушение металла под действием агрессивной среды называется коррозией. Металлические поверхности нагрева котлов подвергаются коррозии под действием продолжительности сгорания (наружная коррозия)

Строительные материалы и конструкции
Поверхности нагрева котлов выполняются из металла и находятся под действием высоких температур, механических напряжений и агрессивной среды. В результате этого могут возникать явления ползучести, к

Обмуровочные материалы
При выполнении обмуровки применяют огнеупорные и теплоизоляционные материалы. Свойства этих материалов делят на две группы: основные и специальные. Основные свойства – это свойства, которы

Фундаменты и каркасы
Фундамент воспринимает массу парогенератора, его обмуровки каркаса и передает эту массу на грунт. Глубина закладки фундамента выбирается с таким расчетом, чтобы обеспечить его устойчивость и минима

Обмуровки
Обмуровка парового и водогрейного котла служит для ограждения топочной камеры и газохода от окружающей среды. Обмуровка подвержена действию высоких температур, химическому воздействию газов, золы,

Гарнитура котла
Устойчива, для обслуживания котла и защиты обмуровки от разрушения при взрыве, называется гарнитурой. В соответсвии с Правилами Котлонадзора котел должен иметь топочные дверцы, лазы для осмотра топ

Питательные устройства
Питательные устройства предназначены для подачи питательной воды в котел. Питательные устройства должны иметь паспорт завода-изготовителя и обеспечивать необходимый расход питательной воды при давл

Арматура и редукционно-охладительные установки
Устройства, предназначенные для прекращения подачи теплоносителя или изменения его количества, а также для обеспечения безопасной работы сосудов, находящихся под давлением, называются арматурой. Вы

Трубопроводы
Система трубопроводов предназначена для соединения между собой всего действующего оборудования парогенераторов, насосов, деаэраторов, ТОА и т.д. Система трубопроводов состоит из труб и арматуры. Ар

Газовоздушный тракт. Тягодутьевые машины
Для организации процесса горения в топку парового или во­догрейного котла необходимо подавать воздух и удалять обра­зующиеся продукты сгорания. Подача воздуха и удаление про­дуктов сгорания могут б

Дымососы и вентиляторы
Вентиляторы, обеспечивающие подачу в топку воздуха, не­обходимого для организации процесса горения, называются дутьевыми вентиляторами. Вентиляторы, предназначенные для удаления продуктов сг

Топливное хозяйство при сжигании твердого топлива
Топливное хозяйство промышленных котельных установок состоит из устройств и сооружений для разгрузки, хранения, складирования и подачи топлива к КА. Основное требование, предъявляемое к оборудовани

Топливное хозяйство при сжигании жидкого топлива
Жидкое топливо для котельных может использоваться как основное, резервное, аварийное и растопочное. При использовании мазута в качестве основного топлива он является единственным видом топлива (ино

Золоулавливание
Для очистки выбрасываемых в атмосферу продуктов сгорания и защиты рабочих колес дымососов от уноса (летучей золы и частиц несгоревшего топл

Шлакозолоудаление
В котельных, работающих на твердом топливе, системы шлакозолоудаления должны обеспечивать надежное удаление шлаков и золы, безопасные условии для персонала, защиту окружающей среды от загрязнения.

Тепловые нагрузки котельных
Режим теплопотребления отдельных предприятий существенно влияет на выбор оборудования котельной и эффективность его использования. Количество и единичная мощность устанавливаемых котлов зависят от

Транспорт тепла к потребителям
Централизация теплоснабжения приводит к необходимости развития тепловых сетей, увеличения их протяженности, что увеличивает затраты на транспорт тепла от теплоисточников до потребителей. Для уменьш

Методика расчета тепловых схем
Расчет тепловой схемы является основным тепловым расчетом при проектировании котельной установки. На основании этого расчета составляют паровой и тепловой баланс котельной, производят выбор оборудо

Компоновка оборудования котельной
Взаимное расположение основного и вспомогательного оборудования в помещении котельного цеха называют компоновкой оборудования. Компоновка выбирается проектной организацией в зависимости от вида сжи

Основные нормы проектирования центральных котельных
Центральные котельные установки проектируются в соответствии со СНиП. При проектировании следует исходить из следующих основных положений: 1. Строительство, расширение и реконструкция коте

Технико-экономические показатели котельных агрегатов
Основными показателями, характеризующими экономичность работы котлоагрегата, являются КПД (брутто и нетто), расход условного топлива на единицу выработанной и отпущенной электроэнергии, удельный ра

18.1 Прямоточные котлы

Организация испарения воды и перегрева пара при прямоточном движении потока была реализована в ряде конструкций котлов. На рис. 18.1 показаны схемы получивших дальнейшее развитие и применение прямоточных котлов Рамзина, Бенсона и Зульцера.

В прямоточных котлы большой паропроизводительности при высоких, сверхвысоких и сверхкритических параметрах пара широко применяются на современных тепловых электростанциях. Такие котлы выпускаются промышленностью для работы на различных видах топлива, производительностью 210 и 1000 т/ч, с начальными параметрами пара 13,7 МПа (140 кгс/см 2), 560°С и промежуточным перегревом до 560°С, а также производительностью 1000, 1650 и 2650, 3650, 3950 т/ч, с параметрами пара 25 МПа (255 кгс/см 2), 565°С и промежуточным перегревом его до 567 °С.

На промышленных предприятиях и на небольших электростанциях прямоточные котлы в настоящее время не используются вследствие нецелесообразности применения пара сверхвысоких параметров в котлах относительно небольшой мощности; высоких требований к питательной воде, обеспечение требуемого качества которой затруднено большими потерями конденсата пара; дополнительных расходов электроэнергии на осуществление циркуляции среды в поверхностях нагрева и усложнение систем автоматического регулирования.

18.2 Котлы специального назначения

18.2.1 Низконапорные и высоконапорные паропроизводящие установки

Для производства электроэнергии находят применение комбинированные парогазовые установки (ПГУ), объединенные в единой тепловой схеме. При этом достигается снижение удельного расхода топлива и капитальных затрат. Наибольшее применение находят ПГУ с высоконапорной перепроизводящей установкой (ВНППУ) и с низконапорной паропроизводящей установкой (ННППУ). Иногда ВНППУ называют высоконапорными котлами.

В отличие от котлов, работающих под разряжением с газовой стороны, в топочной камере и газоходах котлов высоконапорных и с наддувом создается давление относительно небольшое у ННППУ (0,005÷0,01 МПа) и повышенное у ВНППУ (0,5÷0,7 МПа).

Работа котла под давлением характеризуется рядом положительных особенностей. Так, полностью исключаются присосы воздуха в топку и газоходы, что приводит к уменьшению потери теплоты с уходящими газами, а также к снижению расхода электроэнергии на их перекачку. Повышение давления в топочной камере открывает возможность преодоления всех воздушных и газовых сопротивлений за счет дутьевого вентилятора (дымососная тяга может отсутствовать), что также приводит к уменьшению расхода электроэнергии в связи с работой дутьевого устройства на холодном воздухе.

Создание избыточного давления в топочной камере приводит к соответствующей интенсификации процесса горения топлива и позволяет существенно повысить скорости газов в конвективных элементах котла до 200÷300 м/с. При этом увеличивается коэффициент теплоотдачи от газов к поверхности нагрева, что приводит к уменьшению габаритов котла. Вместе с тем его работа под давлением требует плотной обмуровки и различных приспособлений против выбивания продуктов сгорания в помещение.

На рис. 18.2 показана схема парогазовой установки (ПГУ) с высоконапорным котлом. Сжигание топлива в топке такого котла происходит под давлением до 0,6÷0,7 МПа, что приводит к значительному сокращению затрат металла на тепловоспринимающие поверхности. После котла продукты сгорания поступают в газовую турбину, на валу которой находятся воздушный компрессор и электрогенератор. Пар из котла поступает в турбину с другим электрогенератором.

Термодинамическая эффективность комбинированного парогазового цикла с высоконапорным котлом, газовой и пароводяной турбинами показана на рис. 18.3. На Т, s-диаграмме: площади 1-2- 3-4-1 - работа газовой ступени L г, площадь cdefabc - работа паровой ступени L п;- 1-5-6-7-1 -потеря теплоты с уходящими газами cbghc - потеря теплоты в конденсаторе. Газовая ступень частично надстраивается над паровой ступенью, что приводит к значительному увеличению термического КПД установки.

Находящийся в эксплуатации высоконапорный котел, разработанный НПО ЦКТИ, имеет производительность 62,5 кг/с. Котел водотрубный, с принудительной циркуляцией. Давление пара 14 МПа, температура перегретого пара 545°С. Топливо - газ (мазут), сжигается с объемной плотностью тепловыделения около 4 МВт/м 3 . Выходящие из котла продукты сгорания при температуре до 775°С и давлении до 0,7 МПа расширяются в газовой турбине до давления, близкого к атмосферному. Отработавшие газы при температуре 460°С поступают в экономайзер, за которым уходящие газы имеют температуру около 120°С.

Принципиальная тепловая схема ПГУ с ВНППУ мощностью 200 МВт показана на рис. 18.4 установка включает паровую турбину К-160-130 и газовую турбину ГТ-35/44-770. Из компрессора воздух поступает в топку ВНППУ, куда подается и топливо. Высоконапорные газы после пароперегревателя при температуре 770°С поступают в газовую турбину, а затем в экономайзер. В схеме предусмотрена дополнительная камера сгорания, обеспечивающая номинальную температуру газов перед ГТУ при изменении нагрузки. В комбинированных ПГУ удельный расход топлива на 4÷6 % меньше, чем в обычных паротурбинных, снижаются также капиталовложения.

На рис. 18.5 показана принципиальная схема низконапорной паропроизводящей установки ННППУ со сбросом в топку котла отработавших газов газовой турбины. В современных газовых турбинах по условиям работы металла начальная температура газов не должна превышать 750÷800°С. В связи с этим, чтобы снизить температуру газов перед газовой турбиной, избыток воздуха после камеры сгорания составляет α=3÷4. После газовой турбины сбрасываемые в котел газы при температуре 500 о С содержат 16 % кислорода, который используется для сжигания топлива в котле. В рассматриваемой схеме воздухоподогреватель отсутствует. Имеются установки с ННППУ и с воздухоподогревателем. Снижение температуры уходящих газов достигается подачей в котел части относительно холодной воды, минуя регенеративные подогреватели. В такой парогазовой установке достигается снижение удельного расхода топлива на 3÷4 %.

18.2.2 Котлы непрямого действия и с неводяными теплоносителями

Появление котлов непрямого действия было связано со стремлением повысить надежность испарительных поверхностей нагрева при работе на недостаточно очищенной питательной воде. Примером котла с непрямым испарением воды является двухконтурный водо-водяной котел. Его принципиальная схема показана на рис. 18.6. В топочной камере размещены испарительные поверхности первичного контура, заполненные конденсатом, что обеспечивает работу контура без накипи. Образующийся в первичном контуре пар высокого давления направляется в барабан-испаритель, в котором испаряет воду, поступающую в барабан из экономайзера. Конденсирующийся пар первичного контура вновь поступает в испарительную поверхность, а образующийся в барабане-испарителе вторичный пар направляется в пароперегреватель и затем к потребителю. При работе такого двухконтурного водо-водяного котла примеси, содержащиеся в питательной воде, откладываются на поверхностях труб вторичного испарительного контура, что приводит к существенному уменьшению теплоотдачи. Для возможности передачи теплоты от первичного контура ко вторичному поддерживается разность давлений между ними 3÷5 МПа. Наличие двух пароводяных контуров и двух барабанов определяет большие затраты металла и более высокую стоимость такого котла по сравнению с современными.

Для выработки водяного пара на органическом топливе такие двухконтурные водо-водяные котлы распространения не получили. Однако их принцип работы использован в рассматриваемых далее специальных котлах с неводяными теплоносителями, а также в парогенераторах атомных электростанций.

Применение неводяных теплоносителей связано в большинстве случаев со стремлением иметь рабочее вещество с высокой температурой кипения при низком давлении. Такими теплоносителями, используемыми для котлов, в частности, являются органические вещества типа дифенила, расплавленные натрий и калий, их соли и др.

При относительно небольших давлениях для высококипящих теплоносителей (ВОТ) температура кипения существенно возрастает. Так, например, температура кипения ВОТ при давлении 0,7 МПа равна 370 о С.

Не водяные теплоносители используются в первом контуре двух-и трехконтурных котлов с целью выработки водяного пара при низком давлении в первичном контуре. Жидкометаллические теплоносители (Na, К) используют в парогенераторах атомных электростанций.

В качестве промежуточного теплоносителя для котлов некоторое применение нашел ВОТ, представляющий собой эвтектическую смесь дифенила и дифенильного эфира. Двухконтурные котлы с ВОТ используют на промышленных предприятиях для выработки технологического пара на питательной воде низкого качества при малом давлении в первичном контуре, а также для получения высокой температуры стенки поверхностей нагрева, исключающей выпадение «росы». Как видно из вышеприведенных данных, дифенильная смесь при атмосферном давлении имеет температуру кипения 258°С. Для достижения такой температуры при работе на воде давление в контуре должно быть около 0,4 МПа.

Дифенильная смесь - бесцветная жидкость с резким запахом, практически не смешивается с водой, имеет плотность, близкую к плотности воды, теплоемкость ее примерно в 1,5 раза, а теплопроводность примерно в 4 раза меньше, чем у воды. Дифенильная смесь имеет достаточную термическую стойкость до температуры 385 о С, горюча, но практически невзрывоопасна и нетоксична.

На рис. 18.7 показана принципиальная схема котла с ВОТ в качестве промежуточного теплоносителя. В газотрубном котле, использующем теплоту горючих газов после обжиговой печи, испаряется ВОТ, пары которого направляются в теплообменник. В теплообменнике за счет теплоты ВОТ испаряется питательная вода с получением водяного пара, а образующийся конденсат ВОТ вновь поступает в газотрубный котел. На рисунке показаны устройства для заполнения агрегата промежуточным теплоносителем в период растопки.

Применение ВОТ при низком давлении обеспечивает температуру стенки газотрубного котла более 250°С, что исключает образование на трубках агрегата серной кислоты из отходящих газов, для которых температура точки росы высока (около 200°С).

Котлы с ВОТ используются также для промышленных предприятий с целью получения высокотемпературного теплоносителя, применяемого для ряда технологических химических производств (выпарка, перегонка и др.).

Котел предназначен для преобразования химической энергии, содержащейся в топливе, в тепловую энергию пара. Затем этот пар используется для выполнения работы в различных системах судна. Приведенный рисунок показывает схему циркуляции в водотрубном котле. Несмотря на то, что показан котел только одной конструкции, все судовые котлы на жидком топливе работают по подобной схеме.

В водотрубном котле топка окружена пучками труб, которые с помощью коллекторов соединены с верхним и нижним барабанами. Топливо сжигается в топке и тепло радиацией передается окружающим топку кипятильным трубкам. Тепловая энергия за счет теплопроводности передается воде, циркулирующей в трубках. Таким образом производится пар и охлаждается металл труб.

При нагревании воды ее плотность уменьшается, и она имеет тенденцию к движению вверх. Более холодная и тяжелая вода имеет тенденцию к движению вниз. Благодаря тому, что горячая пароводяная смесь стремится вверх, в то время, как более холодная вода движется вниз в опускных трубах, в контуре котла возникает естественная циркуляция.

Когда пароводяная смесь поступает в верхний (паровой) барабан, она разделяется. Пар поступает в верхнюю половину барабана, затем из нее в пароперегреватель, либо непосредственно к потребителям насыщенного пара. Циркулирующая вода остается в нижней части этого барабана, смешивается с поступающей питательной водой и снова проходит через весь контур циркуляции.

В котлах, имеющих пароперегреватели, пар из верхней части парового барабана поступает к пароперегревателям, где он дополнительно подогревается, что увеличивает энергию пара. Затем перегретый пар проходит через турбину высокого давления и возможно турбину низкого давления, где большая часть тепловой энергии преобразуется в механическую энергию.

До того, как пар конденсируется и возвращается в питательную систему, для более полного использования тепловой энергии часть его может быть отобрана из турбины для подогрева питательной воды и других нужд.

После прохождения через все вспомогательные системы пар поступает в конденсатор, где он превращается в воду, которая подается в линию питания, замыкая контур котел - питательная система.

В системах, работающих при более низком уровне давления без пароперегревателей, пар из парового барабана поступает непосредственно в паровую систему, после чего конденсируется и в виде конденсата поступает в систему питания.

На теплоходах обычно предусматриваются две системы для производства пара: утилизационный котел, использующий тепло выпускных газов дизеля, и котел на жидком топливе. Утилизационный котел функционирует при работе двигателя, а котел на жидком топливе используется во время стоянки судна в порту, когда главный двигатель остановлен. Несмотря на то, что конструкция этих котлов отличается от конструкции главных котлов, пар которых используется для пропульсивной установки, эти котлы работают на тех же принципах теплопередачи и их эксплуатация благодаря накипеобразованию и коррозии сопровождается теми же проблемами.

Циркуляцией воды принято называть движение воды по замкнутому контуру. В состав контура циркуляции, в общем случае, входят такие конструктивные элементы котлов, как барабаны, коллекторы, обогреваемые и необогреваемые трубы поверхностей нагрева. Вода может проходить по контуру многократно либо однократно, двигаясь через поверхности нагрева от входа к выходу.

Учитывая зависимость отпричин, которые вызывают движение воды циркуляция подразделяется на естественную и принудительную.

Естественная циркуляция осуществляется в паровых котлах, так как движущий напор в контуре создается разностью плотностей воды и пара. При этом каждый кг воды может постепенно превращаться в пар, многократно проходя через контур, либо превращаться в пар за один проход через поверхность нагрева.

Принудительная циркуляция воды производится с помощью насоса. Она применяется в водогрейных котлах и водяных экономайзерах и является прямоточной.

При любом виде циркуляции и способах ее организации вода и пар, образующийся в контуре, должны надежно охлаждать металл, что крайне важно для безаварийной работы котлов.

Естественная циркуляция воды в паровых котлах. Рассмотрим принцип действия естественной циркуляции на примере контура циркуляции бокового экрана топки (рис. 10).

Рис.10. Схема простейшего контура естественной циркуляции:

1 – коллектор; 2 – опускная труба; 3 – верхний барабан; 4 – экранные (подъемные) трубы.

Питательная вода вводится в верхний барабан котла 3. Из него вода опускается по опускной трубе 2 и входит в коллектор 1. На этом участке контура теплота к воде не подводится (труба теплоизолирована шамотной стенкой) и температура воды остается ниже температуры насыщения при данном давлении пара в котле.

Из коллектора вода поступает в обогреваемые трубы экрана 4 и, поднимаясь по ним, нагревается до кипения, кипит и частично превращается в пар.
Размещено на реф.рф
Образовавшаяся пароводяная смесь вводится в барабан, где разделяется на воду и пар.
Размещено на реф.рф
Пар покидает котел, а вода смешивается с питательной водой и вновь поступает в контур циркуляции.

Участок подъемных труб, где вода нагревается до кипения, принято называть экономайзерным, а содержащий пар – паросодержащим. Высота последнего в несколько раз превышает высоту экономайзерного участка.

На экономайзерном участке вода движется с постоянной скоростью, а на паросодержащем участке она постоянно возрастает, так как количество образующегося пара в подъемных трубах непрерывно увеличивается. Скорость, которую вода имеет на экономайзерном участке, принято называть скоростью циркуляции. По причинœе своего постоянства скорость циркуляции является одной их важных характеристик естественной циркуляции. Ее величина составляет, примерно, 0,5 – 1,5 м/с.

Наличие в контуре участков со средами, имеющие разные плотности, создает в контуре разность давлений или движущий напор циркуляции. Давление в опускных трубах создается столбом воды с плотностьюr В, а в подъемных трубах – столбом воды и пароводяной смеси с плотностьюr СМ . По этой причине более плотная среда вытесняет менее плотную и в контуре создается круговое движение воды. Величина движущего напора определяется зависимостью вида:

S ДВ = h ПАР (r В - r СМ) g Па, (7.1)

гдеh ПАР – высота паросодержащего участка подъемных труб; g – ускорение свободного падения.

Из выражения движущего напора следует, что для циркуляции недостаточно иметь среды с разной плотностью. Необходимо также, чтобы паросодержащие трубы располагались вертикально.

За один проход по контуру только часть воды превращается в пар.
Размещено на реф.рф
По этой причине для характеристики интенсивности испарения воды используется понятие кратности циркуляции:

k = М /Д, (7.2)

где М – расход воды через опускную трубу, кг/ч; Д –количество пара, образующегося в обогреваемых трубах, кг/ч.

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, кратность циркуляции показывает, сколько раз один кг воды должен пройти через контур, чтобы превратиться в пар.
Размещено на реф.рф
Для экранов k = 50 – 70, для конвективных пучков k = 100 – 200.

Величина, обратная кратности циркуляции, характеризует степень сухости влажного пара х = 1/k. Отсюда можно сделать вывод о том, что в экранах образуется пароводяная смесь, содержащая не более 0,02 или 2 % пара. По этой причине даже самые теплонапряженные поверхности нагрева котлов, которыми являются экраны, надежно смачиваются и охлаждаются водой.

В конвективных пучках всœе трубы обогреваются газами, температура которых при прохождении через пучок непрерывно снижается. По этой причине в кипятильных трубах по ходу движения газов паросодержание также уменьшается, а плотность пароводяной смеси возрастает. Наличие в трубах пучка пароводяной смеси с разной плотностью создает движущий напор, который движит воды по следующей схеме: из верхнего барабана вода поступает в задние трубы пучка и по ним поступает в нижний барабан котла; из барабана вода входит в остальные трубы пучка и вместе с паром поступает в верхний барабан.

Принудительная циркуляция. Принудительная циркуляция применяется в водогрейных котлах, а также в экономайзерах паровых котлов. Движение воды по трубам поверхностей нагрева производит насос. Вода входит в поверхности нагрева холодной, а покидает ее горячей, совершая в котле прямоточное движение. Кратность циркуляции воды равна единице.

Важно заметить, что для создания прямоточного движения воды поверхности нагрева котлов изготавливаются в виде отдельных панелœей, которые соединяются между собой последовательно или параллельно. Панель выполняется из одного ряда труб, концы которых замкнуты на нижний (распределительный) и верхний (собирающий) коллекторы. При этом трубы могут иметь как прямую (в основном), так и змеевиковую конфигурацию.

При параллельном подсоединœении труб к коллекторам вода проходит по трубам неодинаковыми расходами, что обусловлено различиями в гидравлических сопротивлениях труб и неравномерным обогревом труб газами. По этой причине в отдельные трубы воды поступает меньше, чем это нужно для надежного охлаждения металла. Возможно даже вскипание воды в отдельных трубах, что еще в большей степени уменьшает поступление воды в такие трубы.

Движение воды в трубах должна быть как подъемным, так и опускным. При этом во избежание вскипания воды ее скорость принимается не менее 0,5–1 м/с. По тем же причинам перепад давления воды в котлах не должен быть более 0,2 МПа.