Мощный лабораторный блок своими руками. Блок питания своими руками Блок питания 6в 10ма своими руками

На разработку этого блока питания потребовался один день, за этот же день он был реализован, и весь процесс был снят на видео камеру. Несколько слов о схеме. Это стабилизированный блок питания с регулировкой выходного напряжения и ограничением тока. Схематические особенности позволяют скинуть минимальную грань выходного напряжения до 0,6 Вольт, а минимальных выходной ток в районе 10мА.

Не смотря на простату конструкции, данному блоку питания уступают даже хорошие лабораторные блоки питания со стоимостью 5-6 тысяч рублей!. Максимальный выходной ток схемы 14Ампер, максимальное выходное напряжение до 40 Вольт - больше не стоит.

Довольно плавное ограничение тока и регулировка напряжения. Блок имеет также фиксированную защиту от коротких замыканий, к стати - ток защиту тоже можно выставить (этой функции лишены почти все промышленные образцы) к примеру, если вам нужно, чтобы защита срабатывала при токах до 1 Ампер - то всего лишь нужно настроить такой ток помощью регулятора настройки тока срабатывания. Максимальный ток - 14Ампер, но и это не предел.











В качестве датчика тока задействовал несколько резисторов 5 ватт 0,39Ом подключенных параллельно, но их номинал можно менять, исходя от нужного тока защиты, к примеру - если планируете блок питания с максимальным током не более 1 Ампер, то номинал этого резистора в районе 1Ом при мощности 3Ватт.

При коротких замыканиях падение напряжения на датчике тока достаточно для срабатывания транзистора BD140, При его открывании срабатывает также нижний транзистор - BD139, через открытый переход которого поступает питание на обмотку реле, в следствии чего, реле срабатывает и размыкается рабочий контакт (на выходе схемы). Схема в таком состоянии может находится сколько угодно времени. Вместе с защитой срабатывает также индикатор защиты. Для того, чтобы снять блок с защиты нужно нажать и опустить кнопку S2 по схеме.

Реле защиты с катушкой 24 Вольт с допустимым током 16-20 и более Ампер.

Силовые ключи в моем случае любимые КТ8101 установленные на теплоотвод (дополнительно изолировать транзисторы не нужно, поскольку коллекторы ключей общие). Заменить транзисторы можно на 2SC5200 - полный импортный аналог или на КТ819 с индексом ГМ (железные), при желании также можно задействовать - КТ803, КТ808, КТ805 (в железных корпусах), но максимальный ток отдачи будет не более 8-10 Ампер. Если блок нужен с током не более 5 Ампер, то можно убрать один из силовых транзисторов.

Маломощные транзисторы типа BD139 можно заменить на полный аналог - KT815Г,(можно также - KT817, 805), BD140 - на КТ816Г (можно также КТ814).
Маломощные транзисторы устанавливать на теплоотводы не нужно.

По сути - представлена только схема управления(регулировки) и защиты (рабочий узел). В качестве блока питания я задействовал доработанные компьютерные блоки питания (последовательно соединенные), но можно любой сетевой трансформатор с мощностью 300-400 ватт, во вторичной обмоткой 30-40 Вольт, ток обмотки 10-15 Ампер - это в идеале, но можно трансформаторы и меньшей мощности.

Диодный мост - любой, с током не менее 15 Ампер, напряжение не важно. Можно использовать готовые мосты, стоят они не более 100 руб.

За 2 месяца было собрано и продано свыше 10 таких блоков питания - никаких жалоб. Для себя собрал точно такой БП, и как только я его не мучил - неубиваемый, мощный и очень удобный для любых дел.

Если есть желающие стать владельцем такого БП, то могу сделать под заказ, свяжитесь со мной по адресу Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра. , остальное расскажут видео уроки по сборке.


Импульсные блоки питания часто используются радиолюбителями в самодельных конструкциях. При сравнительно малых габаритах они могут обеспечить высокую выходную мощность. С применением импульсной схемы стало реально получить выходную мощность от нескольких сотен до нескольких тысяч Ватт. При этом размеры самого импульсного трансформатора не больше коробка из-под спичек.

Импульсные блоки питания - принцип работы и особенности

Основная особенность импульсных БП в повышенной рабочей частоте, которая в сотни раз больше сетевой частоты 50 Гц. При высоких частотах с минимальными количествами витков в обмотках, можно получить большое напряжение. К примеру, для получения 12 Вольт выходного напряжении при токе 1 Ампер (в случае сетевого трансформатора), нужно намотать 5 витков проводом сечением примерно 0,6–0,7 мм.

Если говорить об импульсном трансформаторе, задающая схема которого, работает на частоте 65 кГц, то для получения 12 Вольт с током 1А, достаточно намотать всего 3 витка проводом 0,25–0,3 мм. Именно поэтому многие производители электроники используют именно импульсный блок питания.

Однако, несмотря на то, что такие блоки гораздо дешевле, компактнее, обладают большой мощностью и малым весом, они имеют электронную начинку, следовательно - менее надежны, если сравнить с сетевым трансформатором. Доказать их ненадежность очень просто - возьмите любой импульсный блок питания без защиты и замкните выходные клеммы. В лучшем случае блок выйдет из строя, в худшем - взорвется и никакой предохранитель не спасет блок.

Практика показывает, что предохранитель в импульсном блоке питания сгорает в самую последнюю очередь, первым делом вылетают силовые ключи и задающий генератор, затем поочередно все части схемы.

Импульсные БП имеют ряд защит как на входе, так и на выходе, но и они спасают не всегда. Для того, чтобы ограничить бросок тока при запуске схемы - почти во всех ИИП с мощностью более 50 Ватт используют термистор, который стоит на входе схем.

Давайте сейчас рассмотрим ТОП-3 лучших схем импульсных блоков питания, которые можно собрать своими руками.

Простой импульсный блок питания своими руками

Рассмотрим, как сделать самый простой миниатюрный импульсный блок питания. Создать прибор по представленной схеме сможет любой начинающий радиолюбитель. Он не только компактный, но и работает в широком диапазоне питающих напряжений.

Самодельный импульсный блок питания обладает относительно небольшой мощностью, в пределах 2-х Ватт, зато он буквально неубиваемый, не боится даже долговремнных коротких замыканий.


Схема простого импульсного блока питания


Блок питания представляет собой маломощный импульсный источник питания автогенераторного типа, собранный всего на одном транзисторе. Автогенератор запитывается от сети через токоограничительный резистор R1 и однополупериодный выпрямитель в виде диода VD1.


Трансформатор простого импульсного блока питания


Импульсный трансформатор имеет три обмотки, коллекторная или первичная, базовая обмотка и вторичная.


Важным моментом является намотка трансформатора - и на печатной плате, и на схеме указаны начала обмоток, потому проблем возникнуть не должно. Количество витков обмоток мы позаимствовали от трансформатора для зарядки сотовых телефонов, так как схематика почти та же, количество обмоток то же.

Первой мотаем первичную обмотку, которая состоит из 200 витков, сечение провода от 0,08 до 0,1 мм. Затем ставим изоляцию и таким же проводом мотаем базовую обмотку, которая содержит от 5 до 10 витков.

Поверх мотаем выходную обмотку, количество ее витков зависит от того, какое напряжение нужно. В среднем получается около 1 Вольта на один виток.

Видео о тестировании данного блока питания:

Стабилизированный импульсный блок питания на SG3525 своими руками

Рассмотрим пошагово, как сделать стабилизированный блок питания на микросхеме SG3525. Сразу поговорим о достоинствах данной схемы. Первое, самое важное - это стабилизация выходного напряжения. Также тут есть софт старт, защита от короткого замыкания и самозапит.



Для начала давайте рассмотрим схему устройства.


Новички сразу же обратят внимание на 2 трансформатора. В схеме один из них силовой, а второй - для гальванической развязки.

Не стоит думать, что из-за этого схема усложнится. Наоборот все становится проще, безопаснее и дешевле. К примеру, если ставить на выходе микросхемы драйвер, то для нее нужна обвязка.



Смотрим дальше. В данной схеме реализован микростарт и самозапит.


Это очень продуктивное решение, оно позволяет избавиться от потребности в дежурном блоке питания. И действительно, делать блок питания для блока питания не очень хорошая идея, а такое решение просто идеально.


Работает всё следующим образом: от постоянки заряжается конденсатор и когда его напряжение превысит заданный уровень, открывается данный блок и разряжает конденсатор на схему.





Его энергии вполне достаточно для запуска микросхемы, а как только она запустилась, напряжение со вторичной обмотки начало питать саму микросхему. Также к микростарту необходимо добавить вот этот резистор по выходу, он служит нагрузкой.


Без этого резистора блок не запустится. Данный резистор для каждого напряжения свой и его необходимо рассчитать из таких соображений, что при номинальном выходном напряжении на нем рассеивался 1 Вт мощности.

Считаем сопротивление резистора:

R = U в квадрате/P
R = 24 в квадрате/1
R = 576/1 = 560 Ом.


Также на схеме есть софт старт. Реализован он с помощью вот этого конденсатора.


И защита по току, которая в случае короткого замыкания начнет сокращать ширину ШИМ.


Частота данного блока питания изменяется с помощью вот этого резистора и кондёра.



Теперь поговорим о самом важном - стабилизации выходного напряжения. За нее отвечают вот эти элементы:


Как видим здесь установлены 2 стабилитрона. С их помощью можно получить любое напряжение на выходе.

Расчет стабилизации напряжения:

U вых = 2 + U стаб1 + U стаб2
U вых = 2 + 11 + 11 = 24В
Возможна погрешность +- 0.5 В.


Чтобы стабилизация работала корректно нужен запас по напряжению в трансформаторе, иначе при уменьшении входного напряжения микросхема попросту не сможет выдать нужного напряжения. Поэтому при расчете трансформатора следует нажать на вот эту кнопку и программа автоматом добавит вам напряжения на вторичной обмотке для запаса.



Теперь можно перейти к рассмотрению печатной платы. Как видим, тут все довольно таки компактно. Также видим место под трансформатор, он тороидальный. Без особых проблем его можно заменить на Ш-образный.


Оптрон и стабилитроны расположены возле микросхемы, а не на выходе.


Ну некуда их было поставить на выход. Если не нравится, сделайте свою разводку печатной платы.

Вы можете спросить, почему бы не увеличить плату и не сделать все нормально? Ответ следующий: сделано это с тем расчетом, чтобы дешевле было заказать плату на производстве, так как платы размером больше 100 кв. мм стоят гораздо дороже.

Ну а теперь настало время собрать схему. Тут все стандартно. Запаиваем без особых проблем. Наматываем трансформатор и устанавливаем.

Проверяем напряжение на выходе. Если оно присутствует, то уже можно включать в сеть.


Для начала проверим выходное напряжение. Как видим блок рассчитан на напряжение 24В, но получилось чуть меньше из-за разброса стабилитронов.


Такая погрешность не критична.

Теперь давайте проверим самое главное - стабилизацию. Для этого возьмем лампу на 24В, мощностью 100Вт и подключим ее в нагрузку.



Как видим, напряжение не просело и блок выдержал без проблем. Можно нагрузить еще сильнее.

Видео о данном импульсном блоке питания:


Мы рассмотрели ТОП-3 лучших схем импульсных блоков питания. На их основе можно собрать простой БП, приборы на TL494 и SG3525. Пошаговые фото и видео помогут вам разобраться во всех вопросах по монтажу.

В большинстве современных электронных устройств практически не используются аналоговые (трансформаторные) блоки питания, им на смену пришли импульсные преобразователи напряжения. Чтобы понять, почему так произошло, необходимо рассмотреть конструктивные особенности, а также сильные и слабы стороны этих устройств. Мы также расскажем о назначении основных компонентов импульсных источников, приведем простой пример реализации, который может быть собран своими руками.

Конструктивные особенности и принцип работы

Из нескольких способов преобразования напряжения для питания электронных компонентов, можно выделить два, получивших наибольшее распространение:

  1. Аналоговый, основным элементом которого является понижающий трансформатор, помимо основной функции еще и обеспечивающий гальваническую развязку.
  2. Импульсный принцип.

Рассмотрим, чем отличаются эти два варианта.

БП на основе силового трансформатора

Рассмотрим упрощенную структурную схему данного устройства. Как видно из рисунка, на входе установлен понижающий трансформатор, с его помощью производится преобразование амплитуды питающего напряжения, например из 220 В получаем 15 В. Следующий блок – выпрямитель, его задача преобразовать синусоидальный ток в импульсный (гармоника показана над условным изображением). Для этой цели используются выпрямительные полупроводниковые элементы (диоды), подключенные по мостовой схеме. Их принцип работы можно найти на нашем сайте.

Следующий блок играет выполняет две функции: сглаживает напряжение (для этой цели используется конденсатор соответствующей емкости) и стабилизирует его. Последнее необходимо, чтобы напряжение «не проваливалось» при увеличении нагрузки.

Приведенная структурная схема сильно упрощена, как правило, в источнике данного типа имеется входной фильтр и защитные цепи, но для объяснения работы устройства это не принципиально.

Все недостатки приведенного варианта прямо или косвенно связаны с основным элементом конструкции – трансформатором. Во-первых, его вес и габариты, ограничивают миниатюризацию. Чтобы не быть голословным приведем в качестве примера понижающий трансформатор 220/12 В номинальной мощностью 250 Вт. Вес такого агрегата – около 4-х килограмм, габариты 125х124х89 мм. Можете представить, сколько бы весила зарядка для ноутбука на его основе.


Во-вторых, цена таких устройств порой многократно превосходит суммарную стоимость остальных компонентов.

Импульсные устройства

Как видно из структурной схемы, приведенной на рисунке 3, принцип работы данных устройств существенно отличается от аналоговых преобразователей, в первую очередь, отсутствием входного понижающего трансформатора.


Рисунок 3. Структурная схема импульсного блока питания

Рассмотрим алгоритм работы такого источника:

  • Питание поступает на сетевой фильтр, его задача минимизировать сетевые помехи, как входящие, так и исходящие, возникающие вследствие работы.
  • Далее вступает в работу блок преобразования синусоидального напряжения в импульсное постоянное и сглаживающий фильтр.
  • На следующем этапе к процессу подключается инвертор, его задача связана с формированием прямоугольных высокочастотных сигналов. Обратная связь с инвертором осуществляется через блок управления.
  • Следующий блок – ИТ, он необходим для автоматического генераторного режима, подачи напряжения на цепи, защиты, управления контроллером, а также нагрузку. Помимо этого в задачу ИТ входит обеспечение гальванической развязки между цепями высокого и низкого напряжения.

В отличие от понижающего трансформатора, сердечник этого устройства изготавливается из ферримагнитных материалов, это способствует надежной передачи ВЧ сигналов, которые могут быть в диапазоне 20-100 кГц. Характерная особенность ИТ заключается в том, что при его подключении критично включение начала и конца обмоток. Небольшие размеры этого устройства позволяют изготавливать приборы миниатюрных размеров, в качестве примера можно привести электронную обвязку (балласт) светодиодной или энергосберегающей лампы.


  • Далее вступает в работу выходной выпрямитель, поскольку он работает с высокочастотным напряжением, для процесса необходимы быстродействующие полупроводниковые элементы, поэтому для этой цели применяют диоды Шоттки.
  • На завершавшей фазе производится сглаживание на выгодном фильтре, после чего напряжение подается на нагрузку.

Теперь, как и обещали, рассмотрим принцип работы основного элемента данного устройства – инвертора.

Как работает инвертор?

ВЧ модуляцию, можно сделать тремя способами:

  • частотно-импульсным;
  • фазо-импульсным;
  • широтно-импульсным.

На практике применяется последний вариант. Это связано как с простотой исполнения, так и тем, что у ШИМ неизменна коммуникационная частота, в отличие от двух остальных способов модуляции. Структурная схема, описывающая работу контролера, показана ниже.


Алгоритм работы устройства следующий:

Генератор задающей частоты формирует серию прямоугольных сигналов, частота которых соответствует опорной. На основе этого сигнала формируется U П пилообразной формы, поступающее на вход компаратора К ШИМ. Ко второму входу этого устройства подводится сигнал U УС, поступающий с регулирующего усилителя. Сформированный этим усилителем сигнал соответствует пропорциональной разности U П (опорное напряжение) и U РС (регулирующий сигнал от цепи обратной связи). То есть, управляющий сигнал U УС, по сути, напряжением рассогласования с уровнем, зависящим как от тока на грузке, так и напряжению на ней (U OUT).

Данный способ реализации позволяет организовать замкнутую цепь, которая позволяет управлять напряжением на выходе, то есть, по сути, мы говорим о линейно-дискретном функциональном узле. На его выходе формируются импульсы, с длительностью, зависящей от разницы между опорным и управляющим сигналом. На его основе создается напряжение, для управления ключевым транзистором инвертора.

Процесс стабилизации напряжения на выходе производится путем отслеживания его уровня, при его изменении пропорционально меняется напряжение регулирующего сигнала U РС, что приводит к увеличению или уменьшению длительности между импульсами.

В результате происходит изменение мощности вторичных цепей, благодаря чему обеспечивается стабилизация напряжения на выходе.

Для обеспечения безопасности необходима гальваническая развязка между питающей сетью и обратной связью. Как правило, для этой цели используются оптроны.



Сильные и слабые стороны импульсных источников

Если сравнивать аналоговые и импульсные устройства одинаковой мощности, то у последних будут следующие преимущества:

  • Небольшие размеры и вес, за счет отсутствия низкочастотного понижающего трансформатора и управляющих элементов, требующих отвода тепла при помощи больших радиаторов. Благодаря применению технологии преобразования высокочастотных сигналов можно уменьшить емкость конденсаторов, используемых в фильтрах, что позволяет устанавливать элементы меньших габаритов.
  • Более высокий КПД, поскольку основные потери вызывают только переходные процессы, в то время как в аналоговых схемам много энергии постоянно теряется при электромагнитном преобразовании. Результат говорит сам за себя, увеличение КПД до 95-98%.
  • Меньшая стоимость за счет применения мене мощных полупроводниковых элементов.
  • Более широкий диапазон входного напряжения. Такой тип оборудования не требователен к частоте и амплитуде, следовательно, допускается подключение к различным по стандарту сетям.
  • Наличие надежной защиты от КЗ, превышения нагрузки и других нештатных ситуаций.

К недостаткам импульсной технологии следует отнести:

Наличие ВЧ помех, это является следствием работы высокочастотного преобразователя. Такой фактор требует установки фильтра, подавляющего помехи. К сожалению, его работа не всегда эффективна, что накладывает некоторые ограничения на применение устройств данного типа в высокоточной аппаратуре.

Особые требования к нагрузке, она не должна быть пониженной или повышенной. Как только уровень тока превысит верхний или нижний порог, характеристики напряжения на выходе начнут существенно отличаться от штатных. Как правило, производители (в последнее время даже китайские) предусматривают такие ситуации и устанавливают в свои изделия соответствующую защиту.

Сфера применения

Практически вся современная электроника запитывается от блоков данного типа, в качестве примера можно привести:



Собираем импульсный БП своими руками

Рассмотрим схему простого источника питания, где применяется вышеописанный принцип работы.


Обозначения:

  • Резисторы: R1 – 100 Ом, R2 – от 150 кОм до 300 кОм (подбирается), R3 – 1 кОм.
  • Емкости: С1 и С2 – 0,01 мкФ х 630 В, С3 -22 мкФ х 450 В, С4 – 0,22 мкФ х 400 В, С5 – 6800 -15000 пФ (подбирается),012 мкФ, С6 — 10 мкФ х 50 В, С7 – 220 мкФ х 25 В, С8 – 22 мкФ х 25 В.
  • Диоды: VD1-4 – КД258В, VD5 и VD7 – КД510А, VD6 – КС156А, VD8-11 – КД258А.
  • Транзистор VT1 – KT872A.
  • Стабилизатор напряжения D1 — микросхема КР142 с индексом ЕН5 – ЕН8 (в зависимости от необходимого напряжения на выходе).
  • Трансформатор Т1 – используется ферритовый сердечник ш-образной формы размерами 5х5. Первичная обмотка наматывается 600 витков проводом Ø 0,1 мм, вторичная (выводы 3-4) содержит 44 витка Ø 0,25 мм, и последняя – 5 витков Ø 0,1 мм.
  • Предохранитель FU1 – 0.25А.

Настройка сводится к подбору номиналов R2 и С5, обеспечивающих возбуждение генератора при входном напряжении 185-240 В.

Выпрямитель - это устройство для преобразования переменного напряжения в постоянное. Это одна из самых часто встречающихся деталей в электроприборах, начиная от фена для волос, заканчивая всеми типами блоков питания с выходным напряжением постоянного тока. Есть разные схемы выпрямителей и каждая из них в определённой мере справляется со своей задачей. В этой статье мы расскажем о том, как сделать однофазный выпрямитель, и зачем он нужен.

Определение

Выпрямителем называется устройство, предназначенное для преобразования переменного тока в постоянный. Слово «постоянный» не совсем корректно, дело в том, что на выходе выпрямителя, в цепи синусоидального переменного напряжения, в любом случае окажется нестабилизированное пульсирующие напряжение. Простыми словами: постоянное по знаку, но изменяющееся по величине.

Различают два типа выпрямителей:

    Однополупериодный . Он выпрямляет только одну полуволну входного напряжения. Характерны сильные пульсации и пониженное относительно входного напряжение.

    Двухполупериодный . Соответственно, выпрямляется две полуволны. Пульсации ниже, напряжение выше чем на входе выпрямителя - это две основных характеристики.

Что значит стабилизированное и нестабилизированное напряжение?

Стабилизированным называется напряжение, которое не изменяется по величине независимо ни от нагрузки, ни от скачков входного напряжения. Для трансформаторных источников питания это особенно важно, потому что выходное напряжение зависит от входного и отличается от него на Ктрансформации раз.

Нестабилизированное напряжение - изменяется в зависимости от скачков в питающей сети и характеристик нагрузки. С таким блоком питания из-за просадок возможно неправильное функционирование подключенных приборов или их полная неработоспособность и выход из строя.

Выходное напряжение

Основные величины переменного напряжения - амплитудное и действующее значение. Когда говорят «в сети 220В переменки» имеют в виду действующее напряжение.

Если говорят об амплитудной величине, то имеют в виду, сколько вольт от нуля до верхней точки полуволны синусоиды.

Опустив теорию и ряд формул можно сказать, что в 1.41 раз меньше амплитудного. Или:

Амплитудное напряжение в сети 220В равняется:

Первая схема более распространена. Состоит из диодного моста - соединены между собой «квадратом», а в его плечи подключена нагрузка. Выпрямитель типа «мост» собирается по схеме приведенной ниже:

Её можно подключить напрямую к сети 220В, так сделано в , или на вторичные обмотки сетевого (50 Гц) трансформатора. Диодные мосты по этой схеме можно собирать из дискретных (отдельных) диодов или использовать готовую сборку диодного моста в едином корпусе.

Вторая схема - выпрямитель со средней точкой не может быть подключена напрямую к сети. Её смысл заключается в использовании трансформатора с отводом от середины.

По своей сути - это два однополупериодных выпрямителя, подключенные к концам вторичной обмотки, нагрузка одним контактом подключается к точке соединения диодов, а вторым - к отводу от середины обмоток.

Её преимуществом перед первой схемой является меньшее количество полупроводниковых диодов. А недостатком - использование трансформатора со средней точкой или, как еще называют, отводом от середины. Они менее распространены чем обычные трансформаторы со вторичной обмоткой без отводов.

Сглаживание пульсаций

Питание пульсирующим напряжением неприемлемо для ряда потребителей, например, источники света и аудиоаппаратура. Тем более, что допустимые пульсации света регламентируются в государственных и отраслевых нормативных документах.

Для сглаживания пульсаций используют - параллельно установленный конденсатор, LC-фильтр, разнообразные П- и Г-фильтры…

Но самый распространенный и простой вариант - это конденсатор, установленный параллельно нагрузке. Его недостатком является то, что для снижения пульсаций на очень мощной нагрузке придется устанавливать конденсаторы очень большой емкости - десятки тысяч микрофарад.

Его принцип работы заключается в том, что конденсатор заряжается, его напряжение достигает амплитуды, питающее напряжение после точки максимальной амплитуды начинает снижаться, с этого момента нагрузка питается от конденсатора. Конденсатор разряжается в зависимости от сопротивления нагрузки (или её эквивалентного сопротивления, если она не резистивная). Чем больше емкость конденсатора - тем меньшие будут пульсации, если сравнивать с конденсатором с меньшей емкостью, подключенного к этой же нагрузке.

Простым словами: чем медленнее разряжается конденсатор - тем меньше пульсации.

Скорости разряда конденсатора зависит от потребляемого нагрузкой тока. Её можно определить по формуле постоянной времени:

где R - сопротивление нагрузки, а C - емкость сглаживающего конденсатора.

Таким образом, с полностью заряженного состояния до полностью разряженного конденсатор разрядится за 3-5 t. Заряжается с той же скоростью, если заряд происходит через резистор, поэтому в нашем случае это неважно.

Отсюда следует - чтобы добиться приемлемого уровня пульсаций (он определяется требованиями нагрузки к источнику питания) нужна емкость, которая разрядится за время в разы превышающее t. Так как сопротивления большинства нагрузок сравнительно малы, нужна большая емкость, поэтому в целях сглаживания пульсаций на выходе выпрямителя применяют , их еще называют полярными или поляризованными.

Обратите внимание, что путать полярность электролитического конденсатора крайне не рекомендуется, потому что это чревато его выходом из строя и даже взрывом. Современные конденсаторы защищены от взрыва - у них на верхней крышке есть выштамповка в виде креста, по которой корпус просто треснут. Но из конденсатора выйдет струя дыма, будет плохо, если она попадет вам в глаза.

Расчет емкости ведется исходя из того какой коэффициент пульсаций нужно обеспечить. Если выражаться простым языком, то коэффициентом пульсаций показывает, на какой процент проседает напряжение (пульсирует).

C=3200*Iн/Uн*Kп,

Где Iн - ток нагрузки, Uн - напряжение нагрузки, Kн - коэффициент пульсаций.

Для большинства типов аппаратуры коэффициент пульсаций берется 0.01-0.001. Дополнительно желательно установить как можно большей емкости, для фильтрации от высокочастотных помех.

Как сделать блок питания своими руками?

Простейший блок питания постоянного тока состоит из трёх элементов:

1. Трансформатор;

3. Конденсатор.

Это нестабилизированный блок питания постоянного тока со сглаживающим конденсатором. Напряжение на его выходе больше чем переменное напряжение вторичной обмотке. Это значит, что если у вас трансформатор 220/12 (первичная на 220В, а вторичная на 12В), то на выходе вы получите 15-17В постоянки. Эта величина зависит от емкости сглаживающего конденсатора. Эту схему можно использовать для питания любой нагрузки, если для нее неважно, то, что напряжение может «плавать» при изменениях напряжения питающей сети.

У конденсатора две основных характеристики - емкость и напряжение. Как подбирать емкость мы разобрались, а с подбором напряжения - нет. Напряжение конденсатора должно превышать амплитудное напряжение на выходе выпрямителя хотя бы в половину. Если фактическое напряжение на обкладках конденсатора превысит номинальное - велика вероятность его выхода из строя.

Старые советские конденсаторы делались с хорошим запасом по напряжению, но сейчас все используют дешевые электролиты из Китая, где в лучшем случае есть малый запас, а в худшем - и указанного номинального напряжения не выдержит. Поэтому не экономьте на надежности.

Стабилизированный блок питания отличается от предыдущего всего лишь наличием стабилизатора напряжения (или тока). Простейший вариант - использовать L78xx или другие , типа отечественного КРЕН.

Так вы можете получить любое напряжение, единственное условие при использовании подобных стабилизаторов, это то, напряжение до стабилизатора должно превышать стабилизированную (выходную) величину хотя бы на 1.5В. Рассмотрим, что написано в даташите 12В стабилизатора L7812:

Входное напряжение не должно превышать 35В, для стабилизаторов от 5 до 12В, и 40В для стабилизаторов на 20-24В.

Входное напряжение должно превышать выходное на 2-2.5В.

Т.е. для стабилизированного БП на 12В со стабилизатором серии L7812 нужно, чтобы выпрямленное напряжение лежало в пределах 14.5-35В, чтобы избежать просадок, будет идеальным решением применять трансформатора с вторичной обмоткой на 12В.

Но выходной ток достаточно скромный - всего 1.5А, его можно усилить с помощью проходного транзистора. Если у вас есть , можно использовать эту схему:

На ней изображено только подключение линейного стабилизатора «левая» часть схемы с трансформатором и выпрямителем опущена.

Если у вас есть NPN-транзисторы типа КТ803/КТ805/КТ808, то подойдет эта:

Стоит отметить, что во второй схеме выходное напряжение будет меньше напряжения стабилизации на 0.6В - это падение на переходе эмиттер база, подробнее об этом мы писали . Для компенсации этого падения в цепь был введен диод D1.

Можно и в параллель установить два линейных стабилизатора, но не нужно! Из-за возможных отклонений при изготовлении нагрузка будет распределяться неравномерно и один из них может из-за этого сгореть.

Установите и транзистор, и линейный стабилизатор на радиатор, желательно на разные радиаторы. Они сильно греются.

Регулируемые блоки питания

Простейший регулируемый блок питания можно сделать с регулируемым линейным стабилизатором LM317, её ток тоже до 1.5 А, вы можете усилить схему проходным транзистором, как было описано выше.

Вот более наглядная схема для сборки регулируемого блока питания.

С тиристорным регулятором в первичной обмотке, по сути такой же регулируемый блок питания.

Кстати похожей схемой регулируют и сварочный ток:

Заключение

Выпрямитель используется в источниках питания для получения постоянного тока из переменного. Без его участия не получится запитать нагрузку постоянного тока, например светодиодную ленту или радиоприемник.

Также используются в разнообразных зарядных устройствах для автомобильных аккумуляторов, есть ряд схем с использованием трансформатора с группой отводов от первичной обмотки, которые переключаются галетным переключателем, а во вторичной обмотке установлен только диодный мост. Переключатель устанавливают со стороны высокого напряжения, так как, там в разы ниже ток и его контакты не будут пригорать от этого.

По схемам из статьи вы можете собрать простейший блок питания как для постоянной работы с каким-то устройством, так и для тестирования своих электронных самоделок.

Схемы не отличаются высоким КПД, но выдают стабилизированное напряжение без особых пульсаций, следует проверить емкости конденсаторов и рассчитать под конкретную нагрузку. Они отлично подойдут для работы маломощных аудиоусилителей, и не создадут дополнительного фона. Регулируемый блок питания станет полезным автолюбителями и автоэлектрикам для проверки реле регулятора напряжения генератора.

Регулируемый блок питания используется во всех областях электроники, а если его улучшить защитой от КЗ или стабилизатором тока на двух транзисторах, то вы получите почти полноценный лабораторный блок питания.

Литий-Ионные (Li-Io), напряжение заряда одной банки: 4.2 - 4.25В. Далее по числу ячеек: 4.2, 8.4, 12.6, 16.8.... Ток заряда: для обычных акумов равен 0.5 от ёмкости в амперах или меньше. Высокотоковые можно смело заряжать током, равным ёмкости в амперах (высокотоковый 2800 mAh, заряжаем 2.8 А или меньше).
Литий-полимерные (Li-Po), напряжение заряда одной банки: 4.2В. Далее по числу ячеек: 4.2, 8.4, 12.6, 16.8.... Ток заряда: для обычных акумов равен ёмкости в амперах (акум 3300 mAh, заряжаем 3.3 А или меньше).
Никель-металл-гидридные (NiMH), напряжение заряда одной банки: 1.4 - 1.5В. Далее по числу ячеек: 2.8, 4.2, 5.6, 7, 8.4, 9.8, 11.2, 12.6... Ток заряда: 0.1-0.3 ёмкости в амперах (акум 2700 mAh, заряжаем 0.27 А или меньше). Зарядка не более 15-16 часов.
Свинцово-кислотные (Lead Acid), напряжение заряда одной банки: 2.3В. Далее по числу ячеек: 4.6, 6.9, 9.2, 11.5, 13.8 (автомобильный). Ток заряда: 0.1-0.3 ёмкости в амперах (акум 80 Ah, заряжаем 16А или меньше).