Четыре команды управления по проводам. Схемы управления люстрой по двум проводам с использованием полупроводников. Как работает люстра, подключенная по схеме из двух проводов, на видео

При подключении любого светильника для его работы нужны как минимум два провода – общий ноль и фаза. Если светильник подразумевает несколько ламп, возникает желание сделать включение лампочек отдельно по одной или по группам. В общем случае для этого используют сдвоенные выключатели или несколько одинарных, по одному на каждую группу. Для этого дополнительно прокладывается проводка, по фазе от каждого из выключателей к лампе. Однако иногда возникает ситуация, когда в комнате был светильник с одной лампочкой или люстра включалась целиком, а теперь вы захотели управлять группами источников света в новой люстре, при этом отделочные работы выполнены и нет желания штробить стены под прокладку отдельной фазы. В таком случае проложить дополнительные провода не получится. Тогда есть два варианта решения проблемы. Первый — использовать «умную» люстру, которая управляется с пульта, тогда не нужно изменять проводку, ведь вся коммутация происходит в блоке управления люстрой. Второй вариант — задействовать схему, при которой происходит управление люстрой по двум проводам. О второй способе мы как раз и расскажем далее.

Задействуем диоды

Первая идея заключается в использовании диодной схемы. Суть заключается в том, что несколько установленных параллельно выключателей включают лампы через диоды, перед лампочками также установлены диоды. Так как диод пропускает только одну полуволну синусоидального напряжения бытовой электросети (в данном случае), то и лампа включится та, перед которой включен диод в соответствующем направлении.

Недостаток этой схемы заключается в том, что на каждую осветительную группу подается лишь половина напряжения питания. Лампы накаливания в таком включении будут работать, а вот люминесцентные или светодиодные, если и включатся, то такое питание приведет к преждевременному их выходу из строя. Лампы накаливания будут мерцать с частотой питающей сети, для России это 50 Гц, это ведет к повышенной утомляемости людей находящихся в помещении, а также головным болям и общим недомоганиям. Такой свет нельзя использовать в жилых помещениях.

Еще одна «диодная» схема управления люстрой по двум проводам заключается во включении всех лампочек, но на разную мощность, это реализовано с помощью диода. При включении 1-й клавиши выключателя включается первая полуволна, при второй – полное напряжение. Её можно применять для питания ламп накаливания или . При этом конденсаторы нужны для того, чтобы при нажатии одной из клавиш включались только первые три источника света, ведь ёмкость не пропускает постоянный ток (одна полуволна – это тоже постоянный ток, но пульсирующий). Ёмкость нужна порядка 1 мкФ и напряжением более 300 В. Диоды отечественные КД202 (ж, к, м, р), КД203, КД206, иностранные 1n4007 (можно выпаять из сгоревшей люминесцентной лампы или зарядного устройства).

Схема выглядит следующим образом:

Также рекомендуем просмотреть видео, на котором подробно рассказывается, как управлять люстрой по двум проводам, добавив в схему конденсатор:

Схема на терморезисторе и реле

Третья схема управления светильником по двум проводам на терморезисторе и реле. При включении выключателя напряжение подаётся на схему и зажигаются лампы HL4-HL6. HL1-HL3 запитаны через нормально-замкнутые контакты реле (К1 – его катушка), при подаче питания они размыкаются. Параллельно катушке подключены: задающий резистор R1 и терморезистор R2. Протекание тока через R2 вызывает его нагрев. С повышением температуры его сопротивление падает (NTC или отрицательный температурный коэффициент).

У реле есть некий характерный гистерезис, это значит, что ток включения больший, чем ток удержания. Это значит, что при сниженном сопротивлении R2 ток продолжит протекать через него, но катушка остается запитанной достаточно для удержания реле во включенном состоянии. Чтобы включить все лампы, нужно быстро перевключить выключатель, тогда резистор не успеет остыть и ток пойдёт через него, тока через катушку будет недостаточно для размыкания контактов. Чтобы включить половину лампочек повторно, нужно выключить свет, подождать с половину минуты, чтобы терморезистор остыл и его сопротивление восстановилось, и включить заново.

  • Реле с сопротивлением обмотки около 300 ом, Uсрабатывания 7В, Uотпускания – 3В.
  • R2 – три терморезистора СТ3-17, соединённых параллельно.
  • R1 – МЛТ-0,25, в диапазоне десятков Ом, подобрать для того, что бы реле срабатывало и не срабатывало в зависимости от выбранного режима, который описан выше.
  • Диодный мост – любой рассчитанный на сетевой напряжение, например КЦ407А.
  • C1 – 50 мКф на 16 В.

Используем счетчик

Еще одна схема построена на логических элементах. Суть идеи заключается в том, что вы подаете импульсы и на его выходе попеременно появляются логические единицы. Они используются для включения полупроводниковых ключей, например транзисторов.

Переключение групп ламп происходит при быстром переключении выключателя (вкл./выкл.), так на вход счетчика С поступают тактовые импульсы и на выходе появляются логические единицы. Алгоритм работы:

  1. EL1 & EL
  2. EL1 & EL3 & EL
  3. EL1 & EL2 & EL3 & EL

Сброс счетчика происходит при подаче сигнала на вход R. Для этого нужно выключить SA1 на 15 секунд.

  • Счетные импульсы формирует DD3.
  • Первое включение, на выходе DD3 сформирован логический ноль, удерживается от C2.
  • Короткое переключение разряжает конденсатор и на выходе DD3 появляется логическая единица. Происходит переключение элемента DD2.1 по переднему фронту на счетном входе. И так при каждом кратковременном размыкании SA2.

Самый простой вариант

Мы уже упомянули о люстрах с пультом. Их стоимость на момент написания статьи начинается от 1500 рублей. У них есть преимущество для тех, кто не хочет собирать сложных схем – вам нужно только подключить питание к люстре. Остальные параметры устанавливаются с пульта.

Ассортимент таких устройств достаточно широкий и позволяет реализовать любые дизайнерские идеи в вашей квартире, в том числе есть музыкальные модели и модели, управляемые смартфоном.

Обзор подобной люстры предоставлена на видео:

Теперь вы знаете, как организовать управление люстрой по двум проводам, если нет возможности проложить дополнительную проводку от выключателя. Надеемся, предоставленная информация была для вас полезной и и вы смогли выбрать для себя наиболее подходящий способ решения проблемы!

Материалы

Какую большую роль для нас играет зрение, а вместе с тем и свет, с помощью которого мы видим, говорить излишне. Именно поэтому для нас столь значительную роль в оформлении интерьера играют световые приборы. Где-то они совсем простые, вроде БРА или потолочных светильников, а где-то и более изящные. А чем сложнее световой прибор, тем более сложную схему подключения он и потребует, что само по себе вполне разумеющееся заключение. Вот например люстра, она обычно подразумевают возможность подключения двух цепей с лампами, тем самым изменяя освещенность в комнате от приглушенной, так скажем интимной, до яркого света.
Управление люстрой по трем проводам

Все мы уже привыкли, что люстра с двумя режимами управляется по трем проводам. Фактически в этом случае реализованы две параллельные цепи для каждой из группы ламп люстры. Каждая из цепей начинается с выключателя, чтобы тем самым коммутировать нужную цепь и включать желаемые лампы. Такой вариант можно назвать общепринятым. Он прост и при его реализации можно обойтись минимальными вложениями – одним дополнительным проводом от выключателя до люстры. О таком варианте подробно рассказано в одной из наших статей «Подключение люстры ».
Однако у такого варианта есть и недостатки, это как раз третий провод, который мы упомянули как достоинство минимизировать вложения в схему подключения. Ведь представьте такой вариант, когда стены заштукатурены, а обои наклеены. Здесь пробросить третий провод быстро и беспроблемно уже вряд ли получиться. Здесь два варианта. Это купить люстру, которая будет иметь несколько режимов подсветки, и управляться с пульта управления. Второй вариант это реализовать схему, которая бы обеспечила пошаговое включение для каждой из групп ламп, в зависимости от количество переключений управляющего выключателя. Именно о таких вариантах мы и расскажем далее…

Управление люстрой по двум проводам (схемы)

В нашем случае будет приведено несколько вариантов управления люстрой по двум проводам. Каждый из вариантов будет иметь свои плюсы и минусы, про которые мы расскажем в процессе описания каждого из возможных случаев подключения. А теперь по порядку…

1 Вариант управление люстрой по двум проводам

Первый вариант самый простой, но и самый «ущербный». Он не потребует высокой квалификации от человека, который будет его реализовывать, а также применения множества радиодеталей. Но минус его в том, что уровень эксплуатационных характеристик при этом будет также не высок. Все дело в том, что в схеме используется особенность нашей сети питания, которая как мы знаем выдает переменный ток, с частотой 50 Гц. Также свойство диодов, которые пропускают этот самый ток лишь в одном направлении. Взгляните на схему.

Когда полуволна проходит в одном из направлений, то ток идет через диод до лампы и через диод за выключателем, но при этом расположенный в том же направлении. То есть ток может пройти только через диоды работающие в паре, если так можно сказать. Аналогичная ситуация при прохождении полуволны в обратном направлении. Теперь ток идет через диод перед выключателем и через диод за лампой, при этом диоды также установлены в одном и том же направлении. Итак, как вы уже поняли схема очень простая, смонтировать ее очень просто. Минусов является то, что лампы будут светить в пол накала, так как это будет одна полуволна, то есть напряжение 110 вольт. Также будет присутствовать эффект мерцания, ведь в этом случае частота питания станет также половинной – 25 Гц. Именно об этих низких эксплуатационных характеристиках мы и упоминали ранее.

2 Вариант управление люстрой по двум проводам

Этот вариант можно назвать несколько инновационным. А вот почему!? Это вы поймете из описания принципа работы данной схемы. Прежде взгляните на нее…

При замыкании цепи включаются все лампы HL4-6 включенные напрямую и HL1-3 включенные через контакты реле. Но здесь сразу срабатывает само реле, тем самым отключая лампы HL1-3. Далее в работу вступает терморезистор, который при протекании через него тока начинает менять свое сопротивление, оно уменьшается. В итоге сопротивление меняется до того, что при следующем срабатывании выключателя, ток уже проходит преимущественно через него, а не через обмотку реле. В этом случае реле не срабатывает, и горят все 6 ламп. Здесь важно с помощью резистора R1 найти такое напряжение, чтобы при холодном терморезисторе напряжения хватало на срабатывания реле, а при нагретом его было достаточно для удержания, но не хватало для срабатывания…
Применяемые радиодетали: Реле К1 - малогабаритное с сопротивлением обмотки порядка 300 Ом, напряжением срабатывания 7 В и напряжением отпускания 3 В. резистор R2 - три соединенных параллельно терморезистора СТ3-17 сопротивлением около 330. Резистор R1 типа МЛТ-0,25 сопротивлением несколько десятков Ом. Придется подобрать. Диодный мостик типа КЦ407А. Конденсатор C1 - 50мкФ х 16 В.
Если говорить недостатках этой схемы, то это во первых необходимость настройки под параметры реле и терморезистора. Второе, что вы не сможете переключить свет вновь на меньший, пока не остынет терморезистор. Третья схема лишена этих недостатках, при этом не сложнее…

3 Вариант управление люстрой по двум проводам

Третий вариант заимствован из журнала «Радио», аж за 1984 год. Но эта схема до сих пор актуальна! Давайте взглянем на нее…

Здесь все очень просто и логично. Первоначально включаем лампу H1 и при этом срабатывает реле К1, которое через свои контакты и диод начинает заряжать конденсатор. При кратковременном отключении контакты реле К1 размыкаются, тем самым конденсатор начинает питать обмотку реле К2. Пока реле сработало, это несколько долей секунды или секунд. Здесь все зависит от потребления реле и емкости конденсатора. Вы должны вновь включить выключатель. В этом случае реле самоподхватится и в итоге загорятся все лампы. Минусом схемы является то, что надо вовремя включать выключатель, когда реле К2 еще питает конденсатор. Только в этом случае можно будет обеспечить включение всех ламп.

4 Вариант управление люстрой по двум проводам

Этот вариант кроме того что не предусматривает никакой настройки, так он еще и не имеет каких либо ограничение по временному алгоритму включения ламп. Как схемы 2 , где есть зависимость от температуры резистора и схема 3, где надо успеть включить выключатель второй раз, пока еще не отключилось реле K2. Смотрим схему…

Здесь для срабатывания реле применен тот же самый принцип, что мы рассматривали для схемы 1. Только в этом случае срабатывает реле, а не лампы. В итоге реле в состоянии коммутировать уже «полноценный» ток и напряжение для свечения ламп. Кроме того, если реле имеют сдвоенные коммутируемый контакты, то можно реализовать и третий канал, для подключения третей группы ламп. Через контакты К1.2 и К2.2. Схема не имеет практически никаких недостатков. Разве что нужны будут пару реле на 110 вольт. Конденсаторы ставятся для уменьшения влияния индукционного тока на обмотки реле и для стабилизации тока от перепадов переменного напряжения сети.

Резюмируя реализацию возможности управление люстрой по двум проводам

Итак, резюмируя все вышеприведенное можно акцентировать внимание на двух вариантах. Это вариант 1, когда подключение максимально простое. Его стоит попробовать со светодиодными лампами, где есть встроенные конденсаторы, что несколько смягчит моргание.
Второй вариант, если вы чувствуете в себе силы, что сможете реализовать несложную радиоэлектрическую схему, это использование 4 случая. Вариант лишен каких-либо недостатков, не требует наладки и определенных алгоритмов по включению ламп люстры.

Иногда бывает необходимо вывести пульт управления нагрузками от блока метров на 5-10. Вот тут возникает вопрос как это сделать. Делать радио удлинитель на таком расстоянии не имеет смысла, но и тащить 10 проводов для 5 нагрузок тоже не вариант! Для такого случая как нельзя лучше подходит эта схема. Собранна она на МК Attiny13A и имеет минимум обвязки. В схеме использованы транзисторные ключи и реле для коммутации нагрузки, но возможно использовать оптопары и тиристоры. Всё зависит от ваших нужд. Стабилизированный блок питания в схеме не показан.

СХЕМА

Фьюзы выставляются как на картинке. К заводским установкам МК нужно поставить галочку напротив RSTDISBL ,или наоборот снять галочку если она у Вас стоит. Это зависит от программы которой вы пользуетесь для прошивки МК, некоторые программы отображают фьюзы инверсно. Для проги "CINA PROG" фьюзы LOW=6A , HIGH=FE.

ВНИМАНИЕ!!! После прошивки МК простой последовательный программатор перестаёт видеть МК. Чтобы заново перепрошить МК нужен будет параллейнный программатор или фьюзе доктор!

Один хороший инженер - электронщик говорил, что если, мол, в схеме есть реле, то она нуждается в доработке. И с этим нельзя не согласиться: ресурс срабатывания контактов реле всего несколько сотен, может тысяч раз, в то время, как транзистор, работающий на частоте хотя бы 1КГц делает каждую секунду 1000 переключений.

Схема на полевых транзисторах

Эта схема была предложена в журнале «Радио» №9 2006 г. Она показана на рисунке 1.

Алгоритм работы схемы такой же, как и у предыдущих двух: при каждом кратковременном щелчке выключателем подключается новая группа ламп. Только в тех схемах одна группа, а в этой целых две.

Нетрудно видеть, что основой схемы является двухразрядный счетчик, выполненный на микросхеме К561ТМ2, содержащий в одном корпусе 2 D - триггера. На этих триггерах собран обычный двухразрядный двоичный счетчик, который может считать по алгоритму 00b, 01b, 10b, 11b, и опять в том же порядке 00b, 01b, 10b, 11b … Буква «b» говорит о том, что числа указаны в двоичной системе счисления. Младший разряд в этих числах соответствует прямому выходу триггера DD2.1, а старший прямому выходу DD2.2. Каждая единичка в этих числах говорит о том, что открыт соответствующий транзистор и подключена соответствующая группа ламп.

Таким образом получается следующий алгоритм включения ламп. Лампа EL1 светит как только замкнется выключатель SA1. При кратковременных щелчках выключателем лампы будут зажигаться в следующих сочетаниях: EL1; (EL1 & EL2); (EL1 & EL3 & EL4); (EL1 & EL2 & EL3 & EL4).

Для того, чтобы осуществить переключение по указанному алгоритму, следует на вход C младшего разряда счетчика DD2.1 подавать счетные импульсы в момент каждого щелчка выключателя SA1.

Рисунок 1. Схема управления люстрой на полевых транзисторах

Управление счетчиком

Осуществляется двумя импульсами. Первый из них - это импульс сброса счетчика, а второй - счетный импульс, переключающий лампы.

Импульс сброса счетчика

При включении устройства после продолжительного отключения (не менее 15 секунд) полностью разряжен. При замыкании выключателя SA1 пульсирующее напряжение с выпрямительного моста VD2 частотой 100Гц через резистор R1 формирует импульсы напряжения, ограниченные стабилитроном VD1 на уровне 12В. Этими импульсами через развязывающий диод VD4 начинает заряжаться электролитический конденсатор C1. В этот момент дифцепочка C3, R4 формирует импульс высокого уровня на R - входах триггеров DD2.1, DD2.2, и счетчик сбрасывается в состояние 00. Транзисторы VT1, VT2 закрыты, поэтому при первом включении люстры лампы EL2…EL4 не горят. Включенной остается только лампа EL, поскольку включается непосредственно выключателем.

Формирование счетных импульсов

Через диод VD3 импульсы сформированные стабилитроном VD1 заряжают конденсатор C2 и поддерживают его в заряженном состоянии. Поэтому на выходе DD1.3 поддерживается низкий логический уровень.

При непродолжительном размыкании выключателя SA1 пульсирующее напряжение с выпрямителя прекращается. Поэтому конденсатор C2 успевает разрядиться, для чего потребуется около 30ms, и на выходе элемента DD1.3 устанавливается высокий логический уровень, - формируется перепад напряжения от низкого уровня к высокому, или как его часто называют восходящий фронт импульса. Именно этот восходящий фронт устанавливает в единичное состояние триггер DD2.1, подготавливая включение лампы.

Если внимательно всмотреться в изображение , можно заметить, что его тактирующий вход C начинается наклонным отрезком идущим слева - вверх - направо. Этот отрезок говорит о том, что срабатывание триггера по входу C происходит по восходящему фронту импульса.

Вот тут самое время вспомнить про электролитический конденсатор C1. Подключенный через развязывающий диод VD4, от может разряжаться только через микросхемы DD1 и DD2, другими словами поддерживать их в рабочем состоянии некоторое время. Вопрос в том, насколько долго?

Шифратор и дешифратор, о которых идет речь в статье позволяют создать систему телеуправления, которая дает возможность дистанционно переключать шестнадцать различных команд. При нажатии на кнопки шифратора дешифратор устанавливается в одно из шестнадцати устойчивых состоянии, соответственно нажатой кнопке. Таким образом можно переключать шестнадцать различных нагрузок, шестнадцать режимов, и т.д. используя в качестве канала управления двухпроводную линию связи.

Существенное преимущество данной системы в том, что в ней используется распространенная и доступная элементная база, применяемая в системах дистанционного управления отечественных телевизоров.

Принципиальная схема шифратора показана на рисунке 1. В его основе лежит микросхема КР1506ХЛ1 - основа пульта дистанционного управления телевизоров УС ЦТ. Обычно в типовом включении, в телевизорах эта микросхема вырабатывает сигналы для переключения восьми телепрограмм, или сигналы цифр от "0" до "9" для управления многопрограммными микроконтроллерными устройствами управления телевизоров.

Но технологически в эту микросхему заложена возможность формировать коды для переключения 16-ти программ. Об этом говорит наличие двух шин X и Y, одна из которых в телевизорах 3УСЦТ не используется для переключения программ. Задействовав обе шины, каждая по 8 программ, получаем 16 команд. При нажатии на одну из кнопок на выходе микросхемы (вывод 5) вырабатывается кодовая импульсная последовательность данной команды.

Для того чтобы передавать команды по двухпроводному кабелю система питания узла построена таким образом, что для подачи положительного полюса питания и передачи кодовых импульсов служит один и тот же провод. Происходит это так: в промежутках между передачей команд конденсатор С1 большой емкости заряжается через диод VD2 от источника питания, выходное сопротивление которого повышено резистором R1 (рисунок 2). Это напряжение поступает на стабилизатор на VT3 (рисунок 1) и, далее, на микросхему D1.

Импульсы, вырабатываемые микросхемой D1 (рисунок 1) поступают на вход транзисторного ключа на VT1 и VT2, который включен параллельно источнику питания. В результате его действия на резисторе R1 (рисунок 2) появляются отрицательные импульсы, которые и воспринимаются дешифратором. Во время действия каждого импульса (рисунок 1) напряжение питания шифратора падает до нуля, но диод VD2 в эти моменты закрывается и питание шифратора происходит за счет энергии, накопленной в конденсаторе С2 (рисунок 1).

Рис. 2
Дешифратор (рисунок 2) построен на основе микросхемы КР1506ХЛ2, которая, как и микросхема КР1506ХЛ1 предназначена для работы в системах дистанционного управления телевизоров, и также, может работать в шестнадцатипрограммном режиме.

Кодовые импульсы поступают на вывод 26 этой микросхемы. Кроме этого последовательного входа микросхема имеет параллельные входы, которые используются в телевизорах для местного управления. В данном случае включена цепь R3C3, которая в момент включения питания переводит микросхему D1 в рабочее состояние.

При поступлении кодовой посылки на выходах D1 устанавливается некоторый двоичный код, соответствующий принятой команде. Этот код там будет оставаться до тех пор, пока не поступит другая команда.

Роль дешифратора выполняют два демультиплексора К561КП2 - D2 и D3. Они включены таким образом, что с первой по восьмую команду работает D3, а с девятой по шестнадцатую - D2. Дело в том, что на выходе "8" (вывод 11) D1 присутствует единица только тогда, когда двоичное число "8" и более, следовательно пока там от "0" до "7" на этом выводе логический ноль.

Этот ноль поступает на вход X D2 и на его выходах ни при каких обстоятельствах не может быть единица (ноль или третье состояние). В тоже время, на вход X D3 уровень поступает инвертированный транзисторным ключом VT1, и в это время работает D3. Затем, когда на выходе D1 будет код числа 8 или более, ситуация измениться - заработает D2, a D3 будет блокирован.